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Sequences of random binary numbers created from polarizationmeasurements of single photons were subjected to
a comprehensive runs analysis. Photon pairs from a spontaneous parametric downconversion source were de-
tected in coincidence, with one photon acting as a trigger while the other was analyzed for horizontal or vertical
polarization. The resulting sequences of polarization measurements were tested for runs of consecutive vertical or
horizontal outcomes against a theory of nonoverlapping runs, without numerical unbiasing. The sequences pro-
duced no statistically significant discrepancies with the predicted numbers of runs, even with multiphoton events
retained. © 2011 Optical Society of America

OCIS codes: 270.0270, 270.5568, 270.5290, 030.5260.

1. INTRODUCTION
Single-photon sources of random numbers have become in-
creasingly important in recent years due to their central role
in quantum key distribution protocols for cryptography [1].
These protocols rely on the unpredictability of measurement
outcomes from quantum superposition states for their secur-
ity [2]. This unpredictability is also fundamental to quantum
mechanics. For both of these reasons, experimental tests of
quantum randomness have been performed on bit sequences
derived from radioactive decays [3–5], from atomic fluores-
cence [6], and from single-photon detection times [7–11] or
polarizations [12–15], or both [16].

Here we report on a new theoretical and experimental test,
based on runs analysis, of the randomness of single-photon
polarization measurement outcomes, using pairs of photons
generated by cw-pumped spontaneous parametric downcon-
version [17]. One member of each pair was used as a detection
trigger, while the other was put into a superposition state of
horizontal (H) and vertical (V) polarization, and then mea-
sured in the H–V basis. Runs of consecutive H and V out-
comes were counted, and these totals were compared with
a theory of runs. Because this theory is valid for any ratio
of H to V events, it was not necessary to perform any numer-
ical unbiasing [18,19] on the sequences before tabulating the
runs. In addition, time bins in which two or more polarization
measurements occurred, which are typically discarded in the
construction of quantum cryptographic keys, were included in
the runs analysis to see if any effects could be observed.

2. SINGLE-PHOTON POLARIZATION
MEASUREMENTS
The polarizations of single photons were measured as shown
in Fig. 1 [15]. The apparatus was a “heralded” single-photon
source [20] based on the process of spontaneous parametric
downconversion, in which a photon from a cw “pump” laser is
annihilated within a nonlinear optical medium to produce two
lower-frequency photons, called the signal and the idler [21]. A

cw 405nm diode laser served as the pump, while a 3:0mm
nonlinear beta-barium borate crystal served as the parametric
downconverter (PDC). The PDC was cut for Type I phase
matching, so that the 810nm signal and idler photons emerged
with similar horizontal polarizations [22], and oriented so that
they propagated away from the pump beam at an opening an-
gle of 3°. The signal and idler beams were then directed to
single-photon counting modules (A, B, B0) using lenses and
optical fibers. Within each fiber channel, long-pass filters (LP)
absorbed wavelengths shorter than 780 nm to reduce back-
ground counts.

In cw-pumped downconversion, the signal and idler
photons are emitted at irregular times, but they must be
emitted together in order to conserve energy and momentum.
This fact is expressed in the single-mode approximation for
the quantum state of the light in the signal and idler modes
[21]:

jψi ¼ Mjvaci þ ηjHisjHii þ Oðη2Þj2Hisj2Hii; ð1Þ

where M is a normalization constant and η is a small number
characterizing the size of the perturbation on the initial va-
cuum state. The second term, a product state of one signal and
one idler photon, gives the “heralded” source its name: when a
signal photon is detected, the idler photon must also be pre-
sent, in a close approximation to a localized single-photon
Fock state [23]. This is accomplished in practice using coin-
cidence detection, in which the electronic signals from the sig-
nal and idler detectors are sent to an AND gate, and the
resulting “coincidence count” indicates that a correlated
photon pair was detected [24].

The higher-order terms in Eq. (1) express the possibility
that more than one pair of photons can be generated within
the coherence time of the downconverted light. In quantum
key distribution systems, the presence of two or more photons
in the same spatiotemporal mode, or even within the same
data collection time, can introduce errors into the distributed
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key and/or compromise its security; the probability of this is
kept low by ensuring η ≪ 1 [1,2].

The polarization state of the idler photons was rotated from
jHii to jDii ¼ 1ffiffi

2
p ðjHii þ jViiÞ by passage through a zero-order

half-wave plate (λ=2). The idler photons then were analyzed
by a polarizing beam splitter (PBS), which transmitted H-
polarized photons to detector B, and reflected V -polarized
photons to detector B0. Thus, a coincidence count AB indi-
cated a horizontal polarization outcome for the idler photon,
while a coincidence event AB0 represented a vertical outcome.

The numbers of coincidence counts occurring in a prede-
termined time bin were recorded repeatedly during the experi-
ment. For a cw-pumped downconversion source, this number
follows a Poisson distribution with a mean occupation num-
ber of μ counts per bin [20,23]. Two experiments were per-
formed, with differing values of μ. In each case, the empty
bins, in which no coincidence events occurred, were removed
from consideration because neither a horizontal nor a vertical
outcome was recorded. The remaining occupied bins were
used to construct Sequence Lo-μ (μ ¼ 0:0111) and Sequence
Hi-μ (μ ¼ 0:364). The characteristics of these sequences are
shown in Table 1.

Because μ < 1 for both sequences Lo-μ and Hi-μ, the major-
ity of the occupied bins contained exactly one event, eitherAB
or AB0, corresponding to a horizontal or a vertical idler polar-
ization measurement, respectively labeled “0” and “1.” It is
these singly occupied bins that form the random number se-
quences in polarization-based quantum random number gen-
erators; whenmultiphoton events (more than one coincidence
count) are detected, they are typically not included in the ran-
dom bit sequence because there is no way to unambiguously
assign them as 0s or 1s [15]. However, it is possible to include
these events in a runs analysis of the sequence, as shown in
Section 4. Because the multiphoton events will inevitably cut
short some runs that would have occurred without them, they
are referred to as “interruptors” in the following analysis.

3. TESTS OF RANDOMNESS WITH RUNS
The utility of a statistical test of randomness resides in its gen-
erality, ease of implementation, and sensitivity to deviations
from expected random behavior. In this regard, runs tests
are among the most widely used and most effective (see
Appendix A). In statistical parlance, a run is an unbroken se-
quence of similar events of a binary nature—e.g., outcomes of
a stochastic process denotable by ð1; 0Þ, ðþ;−Þ, ðH;TÞ, or any
other set of two symbols. For example, a sequence of symbols
aabbbaa comprises two runs of as of length 2 and one run of

bs of length 3. The tabulation of runs produced by a set of data
can serve as a test of randomness of the process that gener-
ated the data. More precisely, it is a test of randomness in per-
mutational ordering along a single dimension, either spatial or
temporal. The expression “test of randomness” needs to be
understood appropriately. No statistical test (runs or other-
wise) can prove that a physical process is random. Rather,
a theoretical model leading to the predicted probabilities of
all outcomes is derived from an initial set of assumptions
against which the actual frequencies of observed outcomes
are compared.

The applicability of runs tests is more general than might be
inferred at first glance from the above definition of a run, since
theoriginal data canbeanydiscrete or continuous series of real
numbers. This series can then bemapped to a set of binary ele-
ments in various ways. The different mappings generally pro-
duce different sets of frequencies of runs of specified length,
independently mining the information inherent in the data.

One virtue of a runs test is that it is a distribution-free test,
so called because no assumptions are required regarding the
distribution of the sampled population (in contrast to classical
statistical tests associated with particular distributions, usual-
ly the Gaussian) [25]. Runs tests are distribution free because
they rely on ordinal or categorical relationships between the
elements of the sequence, rather than on the exact magnitudes
of the elements themselves. Nevertheless, to apply a runs test,
one must know, or at least be able to approximate closely, the
distribution of the chosen test statistic. In applying runs tests,
the statistics of interest have traditionally been the total num-
ber of runs (of both types of symbols) and the frequency of
longest runs. However, the data are much more effectively uti-
lized by determining, for each run length t, the probability dis-
tribution pn;t;k for k runs to occur in n trials, and comparing
this with the observed frequencies of all runs.

Fig. 1. Experimental arrangement for measuring single-photon po-
larizations. Signal and idler photon pairs are created in the PDC
and counted in coincidence either at detectors AB or AB0, depending
on the measurement outcome for the diagonally polarized idler
photon in the H–V basis. A binary sequence is created by assigning
“0” to the coincidence events AB and “1” to the events AB0.

Table 1. Characteristics of the Polarization
Measurement Sequences Lo-μand Hi-μ

Sequence

Lo-μ Hi-μa

Mean # events per time bin, μ 0:0111� 0:0002 0:364� 0:002
Time bin duration 1ms 0:1ms
P (no event in a bin) 0.98920 0.694
P (one event in a bin) 0.01074 0.253
P (> 1 event in a bin)
¼ P (interruptor)

0.00006 0.053

Ratio of interruptors to
nonzero events

0.0056 0.17

Without Interruptors

Sequence length, n 8,919,341 16,797,012
Probability of a 1, p 0.47850 0.50037
Subsequences of length 8192,
M

1088 2050

With Interruptors

Sequence length n 8,969,641 20,258,816
Probability of a 1, p0 0.47582 0.41487
Subsequences of length 8192,
M

1094 2473

aSequence Hi-μ was previously subjected to another set of
randomness tests (without interruptors) in [15].
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Broadly speaking, runs tests are of three types. The first
type [26] is based on categorical relationships—e.g., a variate
is assigned symbol a or b depending on whether it was greater
or lesser than a specified threshold, e.g., the median. The null
hypothesis, against which the resulting series containing na

elements of one kind and nb elements of another is compared,
is that each of the

�
na þ nb

na

�

distinguishable arrangements is equally likely prior to sam-
pling. This hypothesis implies that the probability of an ele-
ment (a or b) is constant, no matter where in the series the
element appears.

Table 2. Predicted and Observed Numbers of Runs of 1s for Sequence Lo-μ, With andWithout Interruptors

Run Length t Nobs no int. EðNÞ Nobs with int. EðNÞ
2 1,381,157 1; 381; 300� 900 1,375,944 1; 376; 000� 900
3 572,187 572; 300� 700 567,578 567; 600� 700
4 257,254 257; 300� 500 253,947 254; 000� 500
5 119,840 119; 700� 300 117,665 117; 500� 300
6 56,511 56; 500� 200 55,200 55; 200� 200
7 26,863 26; 870� 160 26,044 26; 110� 160
8 12,878 12; 820� 110 12,443 12; 390� 110
9 6125 6120� 80 5887 5890� 80
10 2966 2930� 50 2850 2800� 50
11 1452 1400� 30 1384 1330� 40
12 730 670� 30 699 630� 30
13 365 321� 18 343 301� 17
14 157 153� 12 142 143� 12
15 69 73� 9 63 68� 8
16 32 35� 6 27 32� 6
17 16 17� 4 13 15� 4
18 9 8� 2 7 7� 2
19 7 3� 2 4 3:5� 1:9
20 4 1:8� 1:4 2 1:7� 1:3
21 2 0:9� 0:9 1 0:8� 0:9
22 2 0:4� 0:6 1 0:4� 0:6
23 1 0:2� 0:4 0 0:2� 0:4
24 1 0:1� 0:3 — —

25 1 0:05� 0:21 — —

26 0 0:02� 0:15 — —

Table 3. Predicted and Observed Numbers of Runs of 1s for SequenceHi-μ, With and Without Interruptors

Run Length t Nobs no int. EðNÞ Nobs with int. EðNÞ
2 2,802,820 2; 803; 000� 1300 2,464,125 2; 464; 000� 1300
3 1,202,758 1; 202; 000� 900 911,663 911; 500� 900
4 561,638 561; 300� 700 361,732 361; 900� 600
5 271,694 271; 800� 500 147,779 147; 500� 400
6 133,684 133; 900� 400 60,917 60; 800� 200
7 66,255 66; 400� 300 25,164 25; 130� 160
8 33,002 33; 110� 180 10,473 10; 400� 100
9 16,568 16; 530� 130 4337 4320� 70
10 8219 8270� 90 1775 1790� 40
11 4047 4130� 60 725 740� 30
12 1987 2070� 50 273 308� 18
13 979 1030� 30 99 127� 11
14 493 520� 20 38 53� 8
15 237 259� 16 13 22� 5
16 119 130� 11 8 9� 3
17 63 65� 8 2 3:8� 1:9
18 34 32� 6 1 1:6� 1:3
19 19 16� 4 0 0:7� 0:8
20 9 8� 3 — —

21 3 4� 2 — —

22 1 2:0� 1:4 — —

23 1 1:0� 1:0 — —

24 1 0:5� 0:7 — —

25 1 0:3� 0:5 — —

26 1 0:1� 0:4 — —

27 0 0:06� 0:25 — —

Branning et al. Vol. 28, No. 6 / June 2011 / J. Opt. Soc. Am. B 1425



The second type of runs analysis, based on ordinal relation-
ships [27], defines an “up–down” run as an unbroken sequence
of increasing or decreasing values. If n unequal numbers are
generated by a random process, then each of the n! distin-
guishable orderings has an equal a priori probability of being
observed. A binary series can be constructed from an ob-
served sequence of real numbers by taking first differences,
i.e., the difference of each pair of contiguous elements, and
assigning (let us say) the symbol “þ” if the difference is po-
sitive and “−” otherwise. In this case, the probability of a
“þ” (or “−”) is not constant within a run: the occurrence of
each “þ” (or “−”) is less probable than the immediately pre-
ceding one. Both of these types—constant-probability runs
and up–down runs—have been used by two of the authors
(Silverman and Strange) to test the randomness of nuclear al-
pha, beta, and electron-capture decay processes [3].

Here we apply a third type of runs analysis, based on the
theory of recurrent runs, which are defined as follows: a se-
quence of n symbols A and �A (read as “not A”) contains as
many runs of length t as there are nonoverlapping uninter-
rupted successions of exactly t symbols A [28]. This definition
leads to generating functions for determining the exact prob-
ability distribution and statistical moments of runs as a func-
tion of run length and length of the data series, in contrast to
approximate or asymptotic expressions that are available in
the statistics literature for the first two types of runs. Also,
unlike the first two types of runs tests, the theory of recurrent
events can be readily generalized to test other patterns be-
sides straight binary runs of A or �A.

4. THEORY OF RECURRENT RUNS
In a sequence of n trials with binary outcomes 1 or 0, we de-
note the occurrence of a run of t consecutive 1s (with t > 1) as
the event εt. Because the runs are nonoverlapping, a given trial
can only be included in one run of a fixed length t. For exam-
ple, the sequence 01110 contains only one event ε2, because
the middle bit cannot belong to two different ε2 events. How-
ever, runs of each length are counted independently of the
others, so that a given bit may belong to runs of different
lengths. For example, the pattern 011110 contains one event
ε5, one event ε4, one event ε3, and two events ε2.

We assume the hypothesis that the trials are independent
and random, with probability p of outcome 1 and q ¼ 1 − p
of outcome 0. Then the mean interval between recurrence
of events εt (the “wait time”) can be shown to be [25]

μt ¼
1 − pt

qpt
; ð2Þ

with variance

σ2t ¼
1

ðqptÞ2 −
2tþ 1
qpt

−
p

q2
: ð3Þ

Let Nn;t be the number of times εt occurs in a sequence of n
trials. The expected value of Nn;t can be shown to be [28]

EðNn;tÞ ¼
nþ 1
μt

þ σ2t − μtðμt þ 1Þ
2μ2t

; ð4Þ

with variance

varðNn;tÞ ¼
nσ2t
μ3t

þ 7μ2t þ 2μ3t − μ4t þ 2μtσ2t ðμt − 1Þ − σ4t
4μ4t

: ð5Þ

In the limit of large n, the first terms dominate and the mean
and variance approach the values

EðNn;tÞ ≅
n
μt
; ð6Þ

varðNn;tÞ ≅
n

μ3t
σ2t : ð7Þ

Tables 2 and 3 show the observed numbers of runs of con-
secutive 1s for the sequences Lo-μ and Hi-μ, along with the
expected numbers of these runs, both with and without inter-
ruptors. As expected, the sequences with interruptors
included have fewer occurrences of runs, because a run of
1s can be halted either by the occurrence of a 0 or by the oc-
currence of an interruptor. The expected numbers of runs are
calculated in this case by reducing p to a new empirically de-
termined value p0 for the sequence, calculated with all of the
interruptors treated as 0 events.

The exact probability distribution for the occurrence of
nonoverlapping runs may be derived by means of generating

Fig. 2. (Color online) Observed frequencies of runs of 1s of length
t ¼ 6 occurring in M subsequences of Sequence Lo-μ of length
8192bits, with interruptors (a) removed and (b) retained. The solid
curves are the theoretical distributions, approximated by a concate-
nation method. The interruptors do not change the distribution appre-
ciably because they occur in only 0.6% of the occupied time bins.
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functions. Let pn;t;k be the probability that exactly k runs of
length t occur in n trials. The moment generating function
for this distribution is

Pn;tðzÞ ¼
X∞
k¼0

pn;t;kzk: ð8Þ

In principle, pn;t;k can be obtained by evaluating the kth deri-
vative of Pn;tðzÞ with respect to z, and the distribution of run
occurrences pn;t;k is obtained as k is varied. For any value of n,
Pn;tðzÞ can, in turn, be obtained from its own generating func-
tion, given by

Htðz; sÞ ¼
X∞
n¼1

Pn;tðzÞsn ¼ 1 − PtðsÞ
ð1 − sÞð1 − zPtðsÞÞ

; ð9Þ

where

PtðsÞ ¼
ptstð1 − psÞ

1 − sþ qptstþ1 : ð10Þ

In principle, Pn;tðzÞ is obtained by taking the nth derivative
of Htðz; sÞ with respect to s.

For small sequence lengths (n < 200), the required deriva-
tives ofHtðz; sÞ and Pn;tðzÞ can be readily evaluated using soft-

ware such as Mathematica, but the evaluation time appears to
grownonlinearlywithn and t, and quickly becomes impractical
for the long sequences generated in these experiments
(e.g., the distribution for n ¼ 8192, t ¼ 6 was successfully ob-
tained after more than 550 h of computation). However, after
Pn;tðzÞ is calculated for small n, it can be used to approximate
Pn;tðzÞ for large n by treating the larger sequence as a conca-
tenation of small ones, and applying a correction for the loss of
runs at the boundaries [29]. For distributions analyzed here,
using sequences of length 8192 trials, this method yielded
values for pn;t;k that differed from the exact probabilities by
a theoretical bound of nomore than 10−6. In caseswhere direct
comparison was possible (t ¼ 2, 3, 4, 6 for Sequence Lo-μwith-
out interruptors), this discrepancywas never greater than 10−8.

5. ANALYSIS OF THE POLARIZATION
SEQUENCES
To compare the observed occurrences of runs with the theory,
the sequences Lo-μ and Hi-μ were partitioned into M
subsequences of length n ¼ 8192bits (the values of M are
listed in Table 1). The number of occurrences of each run
length from 2 to 13 within all the subsequences were compiled
into histograms, such as those shown in Figs. 2–5. For each

Fig. 4. (Color online) Observed frequencies of runs of length t ¼ 10,
for subsequences of Sequence Lo-μ with interruptors (a) removed and
(b) retained. As in Fig. 2, the distributions are nearly identical because
the interruptors are rare. Because the mean number of occurrences is
low, the distributions for t ¼ 10 are not well represented by the nor-
mal distribution, but can be closely approximated with the concate-
nation method (solid curves).

Fig. 3. (Color online) Observed frequencies of runs of length t ¼ 6,
for subsequences of Sequence Hi-μ with interruptors (a) removed and
(b) retained. The solid curves are the theoretical distributions, ap-
proximated by a concatenation method. The interruptors, which con-
stitute 17% of the occupied time bins, shift the distribution
substantially by decreasing the frequency of occurrence of runs.
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sequence, these 12 histograms of observed runs were tested
against the theoretical distributions Nn;t;k ¼ M · pn;t;k with a χ2
analysis [30]. The result of a χ2 analysis is a p value, which is
the probability that the observed Nn;t;k will differ from the pre-
dicted Nn;t;k by the observed amount or more, given that the
null hypothesis of randomness is true. For an ideal random
number generator, these p values are expected to be distrib-
uted uniformly on the interval 0 < p ≤ 1, so that one in every
100 sequences will have p ≤ 0:01. Thus, on average, one in 100
sequences from an ideal random source will fail each test, by
chance, at the significance level of 0.01. If more than 1% of the
sequences fail at this level, the randomness of the source is
suspect.

For example, a multiplicative congruential generator
(MCG) is a deterministic algorithm for producing pseudoran-
dom number sequences, such as the following:

fZi ¼ AZi−1ðmod231 − 1Þ; i ¼ 1; 2;…g; ð11Þ

where Z0 is the (arbitrarily chosen) seed and A is the (con-
stant) multiplier. If Zi is less than 231=2, the output is a 0,
otherwise it is a 1. A previous analysis of this MCG employing
four tests of randomness for 16 values of A found no deficien-

cies in these generators [31]. We used each of these generators
to produce 10,000 sequences of length 200,000 bits, which
were then subjected to our recurrent runs analysis for the
run length t ¼ 2. A given sequence was said to fail if the
number of runs exceeded the expected value at the 0.01
significance level. For the multiplier A ¼ 2; 139; 391; 393, the
number of failing sequences, with p ≤ 0:01, was 128. This
exceeded the expected number of 100 failures at this level
by 2.8 standard deviations, indicating that this MCG with this

Fig. 6. P values from χ2 tests of Sequence Lo-μ with interruptors
retained (solid diamonds) and removed (open circles) for run lengths
2–13.

Fig. 7. P values from χ2 tests of Sequence Hi-μ, with interruptors
retained (solid diamonds) and removed (open circles) for run lengths
2–13.

Fig. 5. (Color online) Observed frequencies of runs of length t ¼ 10,
for subsequences of Sequence Hi-μ with interruptors (a) removed and
(b) retained. As in Fig. 3, the interruptors shift the distribution sub-
stantially in favor of lower numbers, and the concatenation method
allows the theoretical distribution to be well approximated (solid
curves) even where the Gaussian approximation fails.
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particular multiplier is not consistent with the null hypothesis
of randomness.

Returning to the analysis of our data, the p values for se-
quences Lo-μ and Hi-μ are shown in Figs. 6 and 7, respectively.
There are no frequent occurrences of extremely low p values,
either with or without interruptors, which would signal a dis-
agreement with the hypothesis of randomness. Furthermore,
the presence or absence of interruptors does not appear to
systematically shift the p values higher or lower. This is true
even for Sequence Hi-μ (Fig. 7), where interruptors account
for more than 1=6 of all the events.

Finally, the preceding analysis was also applied to runs of
horizontal polarization outcomes (0s) for both sequences,
with interruptors both rejected and retained. The results were
similar to those presented here, and revealed no statistically
significant evidence of any deviations from randomness.

6. CONCLUSION
We have performed a new analysis of the quantum random-
ness of single-photon polarization measurements, based on
a general theory of recurrent runs that is more comprehensive
than our previous analysis based on the National Institute of
Standards and Technology (NIST) Test Suite [15]. Because it
can be applied directly to sequences of any bias, without re-
quiring numerical unbiasing procedures, this new analysis can
be generalized to include multiphoton events (interruptors),
which are usually discarded in polarization-based quantum
random number generators. The randomness of single-photon
polarization sequences appears to be unaffected by the re-
moval of these events.

The method presented here can be generalized to examine
the recurrence of any arbitrary patterns of 1s and 0s in binary
random sequences: one future direction that this implies is to
search for signatures of detector dead time and/or after-
pulsing effects in photonically generated random number se-
quences [32]. These effects may only become apparent for
much shorter data collection time bins, of the order of the
dead time of the single-photon detectors; to this end, we
are increasing the data transfer rates in our coincidence-
counting electronics [33]. We also intend to go beyond the lim-
its of this stationary test to look for time-dependent or spectral
correlations in the polarization measurements, which might
arise from thermal changes in the phase-matching conditions
within the PDC [22]. Finally, we intend to examine further ap-
plications of the concatenation method of approximation for
Pn;tðzÞ [29], which may enable the rapid calculation of other
computationally intensive generating functions appearing in a
wide array of statistical problems.

APPENDIX A: COMPARISON OF RUNS
TESTS WITH OTHER TESTS OF
RANDOMNESS
The null hypothesis tested in our experiment is that there is no
underlying predictive ordering to the measurement outcomes
for single photons prepared in a quantum superposition state
of horizontal and vertical polarization. Conventionally, the
sensitivity of a statistical test is gauged by its power, which
is defined as the probability of not making a Type II error
—i.e., of not wrongly accepting the null hypothesis when it
is false [34]. (A Type I error is to wrongly reject the null hy-
pothesis when it is true.) There is no simple formula for cal-

culating the power of a runs test under general circumstances.
In general, the power of a statistical test may depend on the
circumstances of each situation. Nevertheless, there are rea-
sons to believe that runs tests are particularly effective in
comparison with other tests that could have been employed.

For example, NIST tested three pseudorandom number
generators with five statistical tests at a level of significance
of 1%. Each generator was used to generate 300 series of 1
million elements each. The relative effectiveness of the statis-
tical tests was dependent on the generator, but runs tests were
shown to be the most sensitive in all of the published graphical
summaries [35].

Another basis for tests of randomness is entropy, which in
statistical physics is related to order and in communications
science is related to information. Power calculations of one
such test, which measured the deviation of the estimated en-
tropy of a data set of length n from the theoretical maximum
of a random series of the same length, led to the conclusion
that the test is more powerful than a runs test for low n, but
less powerful than a runs test for large n [36]. The lengths of
the data series in our experiment are very large, in which case
runs tests would be preferred over the entropy test. Moreover,
the entropy test yields a single statistic, whereas runs tests
yield a statistic for each run length.

Finally, in tests carried out by one of the authors (Silver-
man) on the randomness of first differences of closing stock
prices of more than 20 listed companies of the New York
Stock Exchange, the resulting series passed tests of random-
ness based on autocorrelation, periodicity (by means of
power spectra), and entropy, but failed runs tests (against dis-
tributions of pn;t;k) for nearly all values of run length t [37].
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