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| am going to tell you what nature behaves like. If you will ssimply admit that maybe she
does behave like this, you will find her adelightful, entrancing thing. Do not keep
saying to yourself, if you can possibly avoid it, ‘But how can it be like that? because

you will get ‘down thedrain,” into ablind alley from which nobody has yet escaped.

--Richard Feynman, in

The Character of Physical Law
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Abstract

Two of the most celebrated and counterintuitive aspects of quantum theory --
complementarity and nonlocality -- are investigated in a series of five experiments which
use the entangled photon pairs generated via spontaneous parametric downconversion.

In the introduction, the complementary relationship between path
distinguishability and interference of photonsis presented, followed by an historical
introduction to nonlocality, the EPR paradox, and Bell’ sinequality. The entangled
guantum state for the signal and idler photons produced in the process of spontaneous
parametric downconversion is derived heuristically.

An experimental realization of a“quantum eraser” isthen presented. When the
photon paths in aMach-Zehnder interferometer are rendered distinguishable by
coupling to an auxiliary observable, interference vanishes as demanded by
complementarity. However, the experiment shows that if the auxiliary observableis
measured in such away asto permanently destroy this “which-path” information,
interference reappears for two distinct subensembles of the photons. This shows that
interference need not vanish as aresult of “uncontrollable disturbances’ linked to the
uncertainty principle; it can be destroyed and revived solely on the basis of what
information isavailable, in principle, to the observer.

Next, the effect of spectral distinguishability on two-photon interferenceis
shown in a common-path fourth-order interferometer with type-1l downconversion
pumped by ultrafast pulses. The loss of interference visibility due to spectral
distinguishability has important implications for future multi-particle interferometry
experiments, including GHZ demonstrations of nonlocality and quantum tel eportation
schemes. The distinguishability isfound to be related to the symmetry of the joint

emission amplitude spectrum for the signal and idler photons. This suggests a
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mechanism for full restoration of the interference which is successfully demonstrated in
the next chapter.

In the next experiment, the Clauser-Horne-Shimony-Holt form of Bell’s
inequality is shown to be violated by 29 standard deviations by measurements of
entangled photon pairsin the circular polarization basis. Possible reasons for the failure
of earlier attemptsto violate a Bell inequality with circularly polarized light are
discussed.

Finaly, thefirst experimental demonstration of the violation of local realismin
nature without the use of Bell inequalities (but with supplementary assumptions) is

presented.
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Chapter 1

I ntr oduction

Thisthesi s reports the results of five experiments which demonstrate
complementarity and nonlocality in quantum mechanics with optical techniques. Each
experiment made use of the correlated photon pairs produced in the process of
spontaneous parametric downconversion. In the following sections we introduce the
concepts of complementarity and nonlocality, and the process of parametric

downconversion.

1.1 Complementarity

1.1.1 Theuncertainty principle and “which path” information

For any system described by quantum mechanics, it is possible to find certain
pairs of observables -- usualy the quantum-mechanical counterparts of classical,
canonically conjugate quantities like momentum and position -- which cannot be
measured simultaneously to arbitrary precision. Such observables, denoted here as P
and C} arereferred to as complementary, and they obey Heisenberg's minimum
uncertainty relation,

h

5P Q3 5 (1.1)



Thistells usthat there is afundamental limit to how well the values of P and Q can be
determined in the same measurement’. The standard interpretation of this state of
affairs, due to Bohr, isthat the experimental arrangements required to measure
complementary observables are ways physically incompatible, so that making a
precise measurement of one precludes making a precise measurement of the other [1].
The idea of complementarity may be extended to describe the wave/particle
duality exhibited by all quantum mechanical objects. Although eectrons, photons, and
atoms all possess wave and particle properties, they never manifest both types of
behavior together. And, just asisthe case for complementary observables, any
experimental arrangement designed to show one of these complementary attributes
necessarily hides the other. For example, if we have an experimental arrangement
designed to exhibit optical interference, such as'Y oung’ s double-dit apparatus (see
Figure 1.1), then the interference only appearsin those casesin which it isimpossible to
determine which path the photons traversed to reach the screen where they were
detected. The interferenceis taken to be a signature of wavelike behavior, while the

“which-path” information is understood to be a“particle” property for the photons.

1.1.2 Indistinguishablein principle, or in practice?

“Indistinguishability leadsto interference” is the mantrathat will be
encountered repeatedly throughout thiswork. It isasmpleidea, but there are some
situations in which it is quite a subtle matter to determine whether or not the paths

leading to a given photodetection event really are indistinguishable or not.

~ ~ ~ 2\ ~ A »
! The standard deviations 8P °© <(P - (P)) ) and 6Q ° ((Q - (Q)) / are statistical properties

related to an ensemble of measurements, but may also be interpreted as widths of probability
distrbutions for the outcome of any single measurements.
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Figure 1.1 Y oung's double-dlit experiment is the classic starting-point for discussions
of wave/particle duality. To arrive at the detecting screen on the right, the light from the
source at the left must pass through a pair of dlits cut into an absorbing material.
Classically, thelight is described as an electromagnetic wave (@), so that secondary
waves emerge from the dits and create an interference pattern on the screen. Quantum-
mechanically, the light is described as a collection of photons, which cannot be split (b),
but the interference pattern is still manifest in the ensemble of point-like detections of
single photons at the screen so long as the paths ABD and ACD are indistinguishable.



For example, suppose we are able to modify the two-dlit apparatus so that a
marker of some kind is activated when the light passes through one or the other of the
two dits, without disturbing the paths of the photons that reached the screen (see Figure
1.2). Now the question arises, will the photons reaching the screen now show
interference or not? It is clear that if we choose to observe the markersin conjunction
with the arrival of photons at the screen, thereis no interference, because we know
through which dit each photon passed on the way to the screen.

But what if we choose not to observe the markers? Is this enough to render the
photons at the screen “indistinguishable” from the point of view of the measurements,
so that the interference is displayed? The answer is no. Aswe will see from several
experiments reported in thisthesis, it is not enough for the measurement apparatus to
smply ignore which-path information: whether interference occurs depends on whether
thisinformation exists, and not on whether some other part of the apparatus is accessing
it. Paths for which no distinguishing information exists anywherein the universe are
said to beindistinguishable in principle, and it is only events of thistype that ultimately
exhibit interference.

Now suppose we that are to manipulate the markers in some way without
observing them, so that afterwards they are incapable of revealing through which dit a
given photon passed. Would the interference return at the screen in this case? It turns
out that the answer to this question depends critically on the way in which the markers
are manipulated. If they are manipulated so that they can never reveal which-path
information no matter what is done with them later, then the photons at the screen
become indistinguishablein principle, and interference returns.

If, on the other hand, the markers are manipulated so that the which-path

information is hidden only for a particular experimental arrangement, then this might



Figure 1.2 A thought-experiment in which the photons activate a“marker” as they pass
through the dits, so that the which-path information is available in principle.
Complementarity demands that the interference vanish in this case, but isthere away of
“erasing” the information so that interference returns?



be said to make the paths for detection at the screen “indistinguishable in practice.”
Does interference return for these events aswell? We will seein Chapter 2 that it is
indeed possiblein this case to recover alimited kind of interference at the screen,
contingent on our apparatus actually observing the markersin away that erasesthe
which-path information. In some sense, then, we will see that interference can occur
between paths that have been rendered “indistinguishable in practice” by the action of
the quantum eraser apparatus; not by ignoring the which-path information, but by
destroying it. Ultimately, though, this interference will be seen to come from double-
detection paths -- for the photons at the screen, and their corresponding markers -- that

areindistinguishable in principle.

1.1.3 Two-photon interference and spectral markers

In Y oung' s double-dlit experiment, interference occurs between different
pathways leading to afina event that involves only asingle photon: namely, the
detection of light at the screen. However, in nature there exist eventsthat involve
emission or absorption of two photons, rather than one, such as atomic “ cascade”
trangitions, or nonlinear “three-wave mixing” processes. These events may also be
described by quantum mechanical probability amplitudes, and they are capable of
exhibiting interference so long as the photon paths leading to them are
indistinguishable. The “paths’ under consideration may involve the multiple
trgjectories for each photon participating in the event. In Chapter 3, we will encounter an
example of atwo-photon interferometer, and observe the reduction in the two-photon
interference visibility that occurs when the photon pairs are rendered distinguishable by

their spectra. In Chapter 4, we will see that the interference returns when this “ spectral



marker” is removed, so that the two-photon paths become indistinguishable in

principle.

1.2 Nonlocality

1.2.1 Thelimitsof quantum information

For any two operators A and B that do not commute, a more general form of

the uncertainty relation holds[2]:
~ ~ 1/ ~ ~
SAXOB3 —2|\[A,BH. (12)

This equation impliesthat thereis afundamental limit on the accuracy with which the
vauesof A and B can be determined at the same time -- in asense, thereisalimit on
how much information may be specified by the quantum state.? If two observables do
not commute, the quantum state cannot contain information which would specify the
outcome of measurements of both of them. Quantum mechanics, then, is unable to make
deterministic predictions of the outcomes of at |east some measurements; it offers
probabilities instead of certainty. But isthisalimitation of the theory, or isit a
necessary embodiment of limitsin nature on what is knowable in principle? Could
guantum mechanics conceivably be replaced by amore detailed theory, one capable of
making deterministic predictionsin all cases, or doesit already reflect al thereisto

know?

2 Thislimitation is built in to the formalism of quantum mechanicsin the following way: 1.) the
outcome of a measurement of A or B can only be predicted with certainty when the quantum state of
the system is an eigenstate of AorB; 2.)if A and B do not commute, there is no basisin which
both operators are diagonal -- that is, there can be no states which are eigenstates of both A and B.



1.2.2 The EPR Paradox

1.2.2.1 The EPR-Bohm thought experiment

In 1935, Einstein, Podolsky, and Rosen posed the question, “ Can Quantum-
Mechanical Description of Physical Reality Be Considered Complete?” and concluded
that the answer is“no.”[3]. They arrived at this conclusion after considering the results
of a now-famous thought experiment that was later modified by Bohm [4]. As depicted
in Figure 1.3, the EPR-Bohm thought experiment begins with a single spin-zero particle
which is unstable and decaysinto two fermions. The new particles, A and B, fly away
from each other in opposite directions, towards separate observers, each of whom s
prepared to measure a component of the spin of the arriving particle with a suitably
oriented Stern-Gerlach analyzer. In modern parlance, “Alice” measures the projection
of particle A’ s spin onto the unit vector a -- represented by the operator 6, >a -- while
“Bob” measures asimilar spin projection for particle B, 6, xb .2

It is assumed that the total spinis conserved in the decay process, so that the
state of the system” after the decay must be the spin-zero singlet state®
W) = {19l on - Fdultlen). 13)

where n isan arbitrary unit vector and we have introduced the notation

o q#, =+l+) p=AB (1.4)

Tun

Eq. (1.4) impliesthat no matter how Alice and Bob choose to orient their analyzers, the

results of their spin measurements can only be £1. The state in (1.3) does not alow

3 Strictly speaking, the spin projection operators are Sxn = (h/2)8 n ; we will omit factors of 7/2.

* The complete state of the system would be a direct product of the spinor presented here and a
position/momentum state describing the spatial localization of the two particles. Because we are only
concerned with spin measurements here, the spatial part of the state isignored.

5 The eigentstate of the total spin J =S, + S, with eigenvalue J° = j(j + 1)n° = Oisthe singlet
state.
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Figure 1.3 The EPR-Bohm thought experiment. A spin-zero particle decays into two
fermions whose spin components are measured by Alice and Bob aong directions a
and b. The outcome of either measurement may be +1 or -1, but the two results must be
oppositeif Alice and Bob choose the same direction for their Stern-Gerlach
orientations.
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Alice or Bob to predict in advance which of these outcomes they will observe -- each
result will occur with 50% probability -- but it does guarantee that if both Alice and Bob
choose the same orientation for their analyzers, their results will be perfectly
anticorrelated. That is, if Alice and Bob agreeto make a=Db © n, then on those
occasions when Alice happensto observe aspin value of 6, > = +1, [y} is

“collapsed” or projected and becomes
|W¢ :|+)A,n|_)B,n' (15)

which guarantees that Bob’s measurement will yield the opposite result, 6, xn = - 1.
On the remaining occasions when Alice’' s measurement yields -1, Bob’s must yield +1.
This anticorrelation holds no matter what direction Alice and Bob agree to choose for n,
because the state in (1.3) has the same form in any spin basis (n = x,y, z €tc.)®
Thistype of state, in which the spin components of each particle are
undetermined yet correlated with each other, isreferred to as an entangled state. The
measured value of one particle’s spin isintimately tied to that of the other, even though
neither one has a definite val ue before measurement. The entanglement is a consequence
of the fact that the state for the two spins cannot be factored into a product of single-
particle spin states, so that the collapse of |y} for one degree of freedom affects the

other one aswdll.

1.2.2.2 Realism, locality, and the paradox
In their paper, Einstein, Podolsky and Rosen made the following assertion: “If,
without in any way disturbing a system, we can predict with certainty the value of a

physical quantity, then there exists an element of physical reality corresponding to this

® The circular symmetry of the singlet state is no accident; it is the result of the rotational invariance
required for any angular momentum eigentstate to have eigenvalue j=0.
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physical quantity.” This statement defines a philosophical position known as objective
realism, or just realism. In this example, realism impliesthat at the instant Alice
measures, G , " , the quantity 6, xn becomes an element of physical reality which has
an objective, real existence in the natural world, whether or not Bob decides to measure
it; 6, XN acquiresthis “objectively real” status by virtue of the fact that Alice can now
predict its value with certainty.

Now a paradox emerges when we consider two possible (but mutually
exclusive) measurements that Alice might perform: she might decide to measure 6, X,
obtaining a definite value for this quantity and ensuring that the corresponding quantity
for Bob's particle, 6, %X, isan element of reality. On the other hand, Alice might decide
to measure G, % instead of G , %x; in this case, she would make 6, 3y an element of
reality instead.

But since the particles described by (1.3) can be arbitrarily far away from each
other, Alice should not be able to influence any of the properties of Bob's particle. For
according to relativity, Alice's analyzer cannot send an instantaneous signal to Bob's
particle to “tell” it which value of G, % or 6, xy to adopt, or indeed, which of these
two quantities should become an element of reality. Thismeansthat if Bob and Alice
make their measurements simultaneoudly’, there is no way the results of one can affect
the other. The separate nature of the two measurements, insisted on by Einstein, is called
locality.

The EPR paradox, then, isthis: no signal can travel faster than light, and yet
Aliceisable to make either 6, % or 6, »y into an element of reality for Bob's particle
at will, instantaneously and from a distance. Einstein, Podolsky, and Rosen argued that

the only way to resolve this paradox is to accept that both the x and y spin components

" The measurements must be made with spacelike separation, so that they cannot be connected by a
light signal.
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for each particle are actually elements of reality from the moment the particlesare
created. In that case, each of the particles must possess definite values for 6“ xx and
6“ xy al aong, so that Alice and Bob merely uncover each of these predetermined spin
values when they make their measurements.®

However, in the quantum mechanical description of nature,6, xxand 6, xy are
complementary to each other: the operators do not commute’. As mentioned earlier, this
fact forbids any quantum state from specifying eigenvalues of both 6, xand 6, xy for
any particle. What this means, according to the EPR argument, is that quantum
mechanics cannot be a compl ete theory: the above paradox impliesthat in at |east one
system, there exist elements of physical reality which quantum mechanicsis unable to
include by itsvery design.

The implication of thisargument isthat the statistical character of quantum
mechanics arises from our ignorance of nature, and not from limitations of nature itself.
Einstein wrote that it must remain for physicists to complete quantum mechanics with a
deeper theory, in the same sense that thermodynamicsis completed via classica
mechanics. The more complete theory would rely on physical quantitieswhich are
currently unknown to us, analogous to the individual atomic positions and momenta
whose average properties are described by statistical mechanics: the description of these

“hidden variables’ would then permit areturn to acompletely deterministic theory [5].

8 |f this interpretation were correct, the situation would be no more “ paradoxical” than the following:
Alice and Bob decide to cut acoin in half along its thin edge, with the result that one of the piecesis
“heads’ and the other is “tails.” Without looking to see which is which, they each take a piece of the
coin and walk away from each other. At some |ater time, Alice decidesto look at her half of the coin,
and discovers which piece she has been carrying al along. She now knows which piece Bob is
carrying, as well, without the need for any “spooky action at adistance,” in the words of Einstein.
They can carry out this procedure for two coins, corresponding to the two different anticorrelated
elements of reality for each observer.

® The pauli matrices satisfy [ G X,0 >y] = 2ic %z, so that the spins satisfy the angular momentum

commutation relations [ Sxx,S >y] = ihS>z and cyclic permutations therof.
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1.2.2.3 Bohr’sreply

In essence, the EPR argument presents a contradiction between the following
four statements. There exist in nature elements of physical reality as defined by realism;
Nature is constrained by locality; Quantum mechanicsis acorrect description of
nature’®; Quantum mechanics is a complete description of nature. Unwilling to deny the
first three statements, the authors concluded that the fourth oneisfalse.

In his earliest reply to the EPR argument [7], Bohr defended the fourth
statement and argued against the first. He wrote that the EPR definition of an “element
of reality” is an ambiguous one, derived from “apriori philosophical considerations’
rather than being “founded on a direct appeal to experiments and measurements.”
According to Bohr, we should regard as real only those thingswhichwe arein a
position to measure, and because certain types of measurements preclude us from
making others, it isonly right that quantum theory reflect the mutually exclusive nature
of such complementary sets of measurements.

From Bohr’s point of view, the flaw in the EPR argument is the use of
counterfactual reasoning, in which the results of different possible, but mutually
exclusive, measurements by Alice are used together as elements of alogical argument. A
modern statement of thisview isthat “unperformed experiments have no results,” [8]
and it is not necessary for a physical theory to explain them in order to be considered

complete.

10 Strictly speaking, the EPR argument only requires that quantum mechanics give correct predictions
for the thought-experiment under consideration [6].
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1.2.3 Bell’sinequality

1.2.3.1 Bdl’'stheorem

Whatever the criticisms of Einstein’s position, it remained a tenable one until
1964. In that year, J.S. Bell proved that it isimpossible to reproduce all of the
predictions of quantum mechanics using any “hidden variable” theory that
incorporates locality and realism as axioms[9].

To provethis, Bdll returned to the EPR-Bohm thought experiment and
considered the correlations between Alice’ sand Bob’ s measurements not just for the
particular analyzer orientations n = X,y , but for the general casein which they are free
to choose any orientations. Because the outcomes of their measurements can only be
+1 or -1, with a50% chance of finding each value', their mutual correlation functionis
equivalent to their joint expectation vaue:

Qo {DADB}) _ {AB) - {A)B)

Jo ) Koe?)  fiAY)- (a2 (B By

={AB) (1.6)

whenthevaridblesare A=+1 and B = 1 and represent the outcome of any one of
Alice and Bob' s spin measurements, and the brackets denote ensemble averages. In the
most genera formulation of a“local hidden variable” (LHV) theory, the outcome of
each measurement may depend on the particular values of some hidden variables,
collectively denoted by | , and on the orientation of the analyzer, a or b; the expectation

value on the far right in Eq. (1.6) isthen given by
Qa.b)={A(a.1)B(b.A);°> gp(2)A(a)B(b,A)d (L7

where the distribution of values for the hidden variables among al the various decay

events is governed by the probability density p(k) . Note that the outcome of each

" These are empirical facts which are predicted by quantum theory, but do not rely upon it.



15

observer’s measurement is not permitted to depend on the orientation of the other’s
analyzer; thisis how locality isdirectly built in to the theory. On the other hand, A and B
may both depend on the values of | , which are determined at the source.

Bell considered measurements for two possible orientations of Alice’ s analyzer,
(a, a) and of Bob’s analyzer (b, b¢), and showed that the following inequality must

hold if the correlations between them are given by (1.7):
R(a,b) - Qa,bd| +|Q(atb) +Q(at;bg| £ 2 (1.8)

Thisisaform of Bell’sinequality'?, and the statement that all correlations predicted by
LHV theories must satisfy it is Bell’ stheorem. Note that Bell’ sinequality isnot a
statement about quantum mechanics: it is a statement about LHV theoriesintended to
“complete” quantum mechanics.

Remarkably, the correlations predicted by quantum mechanics are able to violate
thisinequality®®. The quantum mechanical expression for the mutual correlation

between Alice' s and Bob's measurements is
Qui(@b) =ty (o, 8)(c s b)w) (19)
Evaluated with the singlet state' in (1.3), this becomes
Qu(ab)=-a%», (1.10)
and the four unit vectors may be chosen™ so that

IQuu (D) - Qqu(a.bd +|Qqu(agb) + Qqu(atbd =242, (112)

2 Thisform of the inequality (not the original) is derived by Bell in reference [10]

3 This fact seems less remarkable if we notice that of the four quantitiesinvolved in (1.8), only one
may be measured by Alice and Bob at atime; Bell’ sinequality therefore involves counterfactual
reasoning, which is permitted for classical observables, for EPR “elements of reality,” and for the
variables A and B, but not for quantum-mechanical observables.

1t is not necessary that the spins be in the singlet state in order to violate Bell’ sinequality, but it is
necessary that their state be an entangled one. See, for example, reference [11].
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in clear violation of (1.8). According to Bell’ s theorem, no LHV theory can reproduce
this prediction, which meansthat it isimpossible to complete quantum mechanicsin the
manner envisioned by Einstein. The inconsistency of quantum mechanics with locality
and realism is often referred to as the nonlocality of quantum mechanics. But is nature

nonlocal aswell?

1.2.3.2 Experimental violations of Bell’ sinequality

The fact that quantum mechanics violates Bell’ sinequaity impliesa
contradiction between the following three statements, all of which were assumed truein
the EPR argument: There exist in nature elements of physical reality as defined by
realism; Nature is constrained by locality; Quantum mechanicsis a correct description
of nature.

Of coursg, it is possible that quantum mechanicsis Ssimply wrong in cases where
it predicts nonlocal behavior by the failure to satisfy (1.8). Then guantum mechanics
could be regarded as an (incorrect) approximation to some LHV theory which, in
addition to being more compl ete, would a so be more accurate than quantum mechanics.
If, on the other hand, the quantum-mechanical prediction (1.11) could be verified -- that
is, if nature could be seen to violate Bell’ sinequality -- then thiswould rule out any
LHV theory as an accurate description of nature, however intuitively satisfying it might
be.

Thefirst proposal for an experimental test of Bell’ sinequality was madein

1969 by Clauser, Horne, Shimony, and Holt [12]. They derived aversion of Bell's

15 One suitable choiceis a = x, a¢=y, b = (x+y)/V2, be= (x - y)/V2
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inequality that could be tested by making polarization measurements on pairs of

photons'® emitted in atomic “cascade” decays. Thisinequality has the form
|R(a,b) - R(a,bd| +R(agb) + R(a¢bd) - R@¢-)- R-,b)£0 (1.12)

whereR(a,b) refersto ameasured joint counting rate for two photodetectors positioned
behind polarizers oriented along directions a and b, or with apolarizer removed as
denoted by the dash (-). Unlike (1.8), the CHSH inequality can be tested with practical,
inefficient photodetectors, but it requires that an additiona “fair sampling” assumption
be made, so that the subensemble of detected photons is representative of the whole
ensemble of emitted photon pairs. To date, numerous experimental violations of the
CHSH inequality have been observed. The most striking of these was an atomic cascade
experiment conducted in 1982 by Aspect, Ddibard, and Roger [13], in which the
orientations of Alice’'sand Bob's analyzers were changed in a pseudo-random fashion
after the photons were emitted, but before they impinged onto the polarizers. This
experimental arrangement was designed to guarantee the spacelike separation of the
measurements and to ensure that Einstein’s locality condition applied to them™ .

It would seem, then, that the predictions of quantum mechanics have been
vindicated, so that we are forced to accept that nature behaves in direct contradiction to
the EPR assumptions of locality and realism. However, staunch advocates of LHV

theories’® continue to point out that, to date, there have been no experimental violations

'8 The original EPR-Bohm thought experiment involved spin measurements of correlated fermions.
Although photons are bosons, their polarization states may be described with a spin-1/2 algebra
because only two orthogonal polariations exist which are transverse to the direction of propagation.
"Whether or not they completely succeeded seems open to debate, since the “random” setting of the
analyzer encountered by each photon was determined by a periodic switching signal emanating from
within the backward light cones of the two detection events[14,15].

18 See, for example, reference [16]
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of Bell’sinequality initsoriginal form™: only the CHSH inequdlity, with itsfair-
sampling assumption, has been shown to be inconsistent with nature. Therefore, what
these experiments actually tell usisthat not al three of the following statements can be
true: There exist in nature elements of physical reality as defined by realism; Natureis
constrained by locality; Thefair sampling assumption isvalid. Because of this
“loophole,” it is possible to construct alternative theories to quantum mechanics that
are consistent with locality and realism and with al existing experimental data, so long
asthey violate the fair sampling assumption. Such theories must remain open as logical
possibilities until a“loophole-free” experiment is able to demonstrate violations of the

Bell inequality (1.8) without additional assumptions.

1.2.3.3 Experimental non-violations of Bell’sinequality?

The CHSH inequality appliesto rotationally invariant systems like the one
presented in the EPR-Bohm thought experiment. Thisinequality, and the predictions of
guantum mechanics, should have the same form even if circular, rather than linear,
polarizations are measured by Alice and Bob. Despite this, there are two known casesin
which attempts to show violations of the CHSH inequality by measurementsin a
circular polarization basis have failed. A modern version of these experiments which

succeeded is presented in Chapter 5.

1.2.4 Beyond Bell’sinequality

For twenty-five years, Bell’ sinequality reigned as the standard expression of

the conflict between quantum mechanics and the EPR axioms of locality and realism.

® The original form of Bell’sinequality presented in (1.8) is sometimes referred to as the “strong” Bell
inequality, while those forms that include additional assumptions, such asthe CHSH inequality in
(1.12), are called “weak” Bell inequalities.
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But in 1989, an even more striking way of demonstrating this incompatibility was
discovered by Greenberger, Horne, and Zeilinger®. The GHZ thought-experiment
involves spin measurements on three spin-correlated particles, instead of just two, and it
shows that quantum mechanics is inconsistent with local-realism based on the results of
asingle measurement, without the use of inequalities. So far, there has been no
experimental realization of this experiment for lack of a suitable three-particle source;
the experiment may be feasibleif the emissions from severa parametric
downconversion processes (see Section 1.3) could be synchronized, and thisis part of
the motivation for the experiments described in Chapters 3 and 4.

In 1993, Hardy devised another thought-experiment that demonstrates the
nonlocality of quantum mechanics without the use of inequalities[18]. Hardy’s
approach, as adapted later by Jordan to spin-3 systems, wasto return to the two-particle
EPR-Bohm thought experiment and consider entangled states which do not possess the
circular symmetry of the one given in Eq. (1.3). It turns out that for these asymmetric
statesit is possible to formulate a set of four logical statements about the outcomes of
Alice and Bob' s measurements, each of which may be independently verified by
guantum mechanics and by direct measurement, but which create alogical contradiction
when considered together. Aswith Bell’ sinequality, the GHZ experiment, and the EPR
paradox, this conundrum arises from the use of counterfactual reasoning about the
outcomes of mutually exclusive experimental arrangements -- reasoning whichisvalid
from alocal-redistic point of view, but which may not be valid for quantum mechanics.
The Hardy-Jordan propositions are presented explicitly in Chapter 6, along with the

results of the first experimental test of these propositions.

2 A simplified form of the GHZ argument is presented in refernce [17]
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1.3 Spontaneous parametric downconversion

1.3.1 Overview

Parametric downconversion is a three-wave mixing process in which an
incident electromagnetic field oscillating at the pump frequency drivesthe electronsin a
diglectric medium to radiate energy at two lower frequencies: the so-called signal and
idler frequencies (see Figure 1.4). The process can occur in materials whose induced
polarization depends nonlinearly on the strength of the incident electric field; this
nonlinear response is a consequence of the anharmonicity of the potential wellsfor the
bound electrons in these media. In particular, certain noncentrosymmetric crystals may
have a strong second-order nonlinear electric susceptibility x %, which givesriseto an

induced polarization of the form
PA(rt)= x?E(r,t)E(r t). (1.13)

Thisisatensor relation describing only the second-order nonlinear part of the induced
polarization within the dielectric materia. The nonlinear coupling is quite weak even for
the most strongly nonlinear materials, but if alaser isused to supply ahighly intense
pump field, the effects can become significant.

The process is parametric in the sense that the atoms in the nonlinear medium
play therole of spectators, and do not undergo state transitions during the mixing. As
such, they do not exchange any energy or momentum with the fields, so that the fields
themselves form a closed system in which energy and momentum must be conserved.
For traveling planewave pump, signal, and idler fields, these energy and momentum

constraints are expressed as the phase-matching conditions:

wp = O)S +(De (114)

and
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Nonlinear Signdl

Figure 1.4 Parametric downconversion occurs in a nonlinear medium whose induced
polarization is proportional to the square of the electric field. The pump field drives
oscillations at two lower frequencies, creating signa and idler beams which emerge
from the crystal in different directions.
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k, =k +k,. (1.15)

Classically, the downconversion process can only occur when thereisinitialy
radiation in the signal or idler mode, aong with the pump. In this case, theresult isan
amplification of the signal and a corresponding attenuation of the pump, with the excess
energy radiated into the idler beam. This processis known as parametric amplification,
and it can exhibit gain over alarge range of signa and idler wavelengths. It formsthe
basisfor highly tunable optical parametric amplifier (OPA) and oscillator (OPO)
devices.

Quantum mechanically, the parametric amplification process may be viewed as
stimulated parametric downconversion, in which a pump photon is absorbed and then
excites an electron in the medium to a higher-energy “virtual” level (see Figure 1.5).
Theincident signal photon then stimulates atransition down to an intermediate virtual
level, accompanied by the coherent emission of a second photon at the signal frequency.
Thisemission isimmediately followed by adecay back down to the ground state,
accompanied by the emission of aphoton at the idler frequency.

However, unlike the classica model, the quantum mechanical description of this
process a so alows for spontaneous emission to occur here, so that the pump photon
may decay into apair of signal and idler photons even in the absence of an incident
signal field. This process of spontaneous parametric downconversionis often viewed
as an amplification of the vacuum field, in the sense that spontaneous transitions from
the excited virtual state are thought of as being stimulated by vacuum fluctuationsin the
signal mode, which are equally likely to occur at al frequencies. The phase-matching
conditions ensure that the emerging photons are correlated in momentum and energy,
even though these attributes are not defined for either photon until a measurement is

performed on one of them. This entanglement, aong with the fact that the photons are
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Figure 1.5 Parametric downconversion may be seen as the annihilation of a pump
photon, with an accompanying transition within the materia to an excited “virtua”
level, followed by adecay back to theinitia state and emission of the lower-frequency
signal and idler photons.
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emitted smultaneously within the coherence time, means that the photons produced in
this process are capable of exhibiting nonclassical behavior in avariety of ways. The
process of spontaneous parametric downconversion isthe starting point of all the

experiments described in thisthesis.

1.3.2 Theqguantum state

A simplified description” of spontaneous parametric downconversion begins
with an interaction Hamiltonian that specifies the creation of asignal photon and an

idler photon along with the simultaneous annihilation of a pump photon [19]:

H, =ngd/§'a, + hec. (1.16)
Here 4] and &' are the creation operators for the signal and idler field modes, while &,
isthe annihilation operator for the pump field mode, g is a coupling constant, and
“h.c.” represents the Hermitian conjugate of the first term (see Appendix A). For this
smple description, the pump, signal, and idler modes are assumed to be infinite
planewaves satisfying the phase-matching conditions (1.14) and (1.15).

In the interaction picture, the state of the system evolves according to
él 1 )
v (1) = expg- QH, (19dtw (0)) (1.17)

where |y (0)) istheinitial state of the system. When the pump field is supplied by acw

laser, thisstateis

v (0)) =10},10} |V, (1.18)

2 Detailed derivations of the quantum state for spontaneous parametric downconversion under various
pumping conditions are presented in Appendices A and B.
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wherethe signal and idler modes are initially empty, and the pump field iswell-
approximated by a coherent state with mean photon number V| . With the help of
(1.18) and (1.16), the unitary operationin (1.17) may be carried out and truncated to the

lowest nonvanishing order ing. Theresult is
lw) =Ivac) +n| 1|, (1.19)

where we have omitted the Hilbert space for the pump field, and included only the signal
and idler modes, so that |vac) © |0} |0}, . Herem isacreation efficiency parameter

proportional to g and V, that satisfies the weak interaction condition

i’ <<1. (1.20)

Hence, the probability for apair of photonsto be created in the signal and idler modes
issmall, but non-zero. Morerigoroudly, the state in (1.19) is shown to be the single

mode limit of a multimode superposition state in Appendix A.

1.3.3 Type-l and type-1l phase matching

The phase-matching conditions (1.14) and (1.15) may be combined to give the

following constraint for the refractive index of the medium:
n(u) p)ms + n(m p)wi = n(o) S)ooS + n(mi )o)i : (1.21)

Becausen isamonotonically increasing function over the optical range of frequencies,
this equation cannot be satisfied if the same refractive index applies to the pump, signal
and idler fields. However, if the nonlinear medium is birefringent, so that the index for
the pump field is lower than the index for at |east one of the downconverted fields,
(1.21) may be satisfied. The two ways of achieving thisin practice are labeled as “type-

I” and “type-11" downconversions.
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In type-I downconversion, the signal and idler fields have the same polarization,
while the pump field is polarized orthogonally to them. For materials such as crystalline
LilO, and BBO which possess “negative uniaxia” symmetry, theindex of refraction
for the extraordinary (€) polarization islower than that for the ordinary (o) polarization.
The signal and idler beams are therefore o-polarized, while the pump is e-polarized. The

phase-matching condition is satisfied when
ne(o‘) p)(os + ne((op)wi = no(ws)ws + r]o((J‘)i )(Di ' (122)

In type-1l downconversion, the signal and idler fields possess orthogonal
polarizations, and the pump is again polarized to experience the lower of the two
refractive indices. For negative uniaxial crystals, the pump is again e-polarized, while the

signal iso-polarized and theidler is e-polarized, so that
ne(o‘) p)o‘)s + ne(o‘)p)(‘oi = no(ws)('os + ne(o‘)i)o‘)i ' (123)

Both types of downconversion are commonly used. For some interferometric
experiments, however, type-1l downconversion offers apractical advantage: because the
signa and idler photons are orthogonally polarized, it is possible to construct
interferometersin which the photons propagate collinearly and are separated by their
polarizations before being detected (see Figure B.1 in Appendix B). Such “common-
path” interferometers are much more stable than those with separate paths, since any

drifts or vibrations of optical elements are experienced by both photons together.

1.3.4 Cw and pulsed pump sour ces

The pump field for the downconversion processis usualy supplied by anarrow
linewidth, cw laser, astreated in Section 1.3.2. However, the use of a broadband pulse as

the pump source has become more common in recent years, because it offersthe
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possibility of synchronizing the emissions from multiple downconversion processes.
This synchronization has proved useful in quantum teleportation experiments [20,21],
anditisasoacrucia step towards the realization of the GHZ nonlocality experiment
mentioned in Section 1.2.4. The combination of a pulsed pump with atype-ll
downconversion source may seem optimal for the latter, asit would combine the
advantages of synchronization and common-path interferometry. But, as shown in
Chapter 3, this combination resultsin signal and idler photon pairs which are spectrally
distinguishable from each other, a side-effect which threatens to destroy any quantum
interference effects they might otherwise display. A solution to this problem is

presented in Chapter 4.

1.4 Methods, notation and terminology

1.4.1 Usingtheinteraction pictureto describe monochromatic fields

Throughout thisthesis, we will use the interaction picture for the theoretica
treatment of the experiments. In addition, we will often find it convenient to disregard
the broad spectrum of the signal and idler fields and to represent each of them by a
monochromatic plane wave asin Section 1.3.2. In this“two-mode” limit, the signal and
idler modes have infinite length, and even extend to regions of space behind the
downconversion crystals. Since the signal and idler photons are excitations of these
infinitely long modes, it is possible to obtain some unphysical resultsin this limit for
certain experimental configurations. In particular, if the modes from two
downconverters are combined at a beamsplitter without careful attention to the input-
output relations, the two-mode theory in the interaction picture can produce nonzero
probabilities for the photons to be localized behind the downconverters [22]. These

unphysica results vanish when the multimode treatment of the process presented in
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Appendix A isused, because timing constraints for the creation of the photon
wavepackets are then automatically imposed.

When applied to the detection of photons after the downconverters, however, the
two-mode interaction picture agrees with the monochromatic limits of the multimode
theory, and offers the simplest analysis possible. In this thesis, care has been taken not

to push the two-mode theory beyond this domain of validity.

1.4.2 Notation for the Hilbert space norm

In the ensuing chapters, we will frequently encounter expectations of the form
AL A ~ 2
(v|0'Qw) =[Oy . (1.24)

where 0’0 represents anormally-ordered collection of number operators for the various
fields being detected. The notation on the right-hand side of this equation is meant to

imply multiplication of Ohy'} by its Hermitian conjugate {4y |O' .

1.4.3 Photons

Like most researchers, this author does not have alicense to use the word
“photon” as apparently issued by one W.E. Lamb, Jr. at the 1960 Rochester
Conference on Coherence and Quantum Optics [23], having been born too late to
qualify. Nevertheless, the term will be used freely -- though not ambiguously --
throughout thiswork to refer to a single quantum excitation of some normal mode of
the electromagnetic field. The modes need not be monochromatic; in fact, the broad
spectral widths of some of these modes are central to Chapters 3 and 4. The photonsin
those modes are represented by pure superposition states of single excitations over the

range of possible frequencies, and, as such, each of them can be said to possess the
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entire spectrum of the mode [24]. Likewise, the word “photon” does not automatically
imply spatially or temporally localized particles, though it will be used most oftenin

conjunction with photodetection events that occur within very short times.
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Chapter 2

The Quantum Eraser

2.1 Introduction

2.1.1 Complementarity without the uncertainty principle?

For any eventsin nature which could have occured via many distinct pathways,
complementarity demandsthat if “which-path” information is made available, then it
must always be at the cost of interference. But what is the mechanism that makes this
interference disappear? From the earliest days of quantum theory, the uncertainty
principle has appeared at the heart of discussions about complementarity. The more
famous among these discussions are based on ingenious thought experiments which
illustrate the consequences of trying to observe wave and particle behavior in asystem at
the same time, and show how the uncertainty principle ultimately providesa
“measurement back-action” of some sort which has the effect of blurring the
interference fringes. The two most well-known examples are Einstein’ s recoiling
double-dlit apparatus and Feynman'’s light microscope, depicted in Figure 2.1; both are
variations of Y oung's double-dit apparatus. In Einstein’ sversion (a), the ditsare
mounted on springs which allow them to recoil from the impact of photons colliding
with them en route to the screen. The momentum of this recoil can be measured and
used to determine which of the two dits a given photon passed through, without
blocking either path to the detection screen. In Feynman’'s version (b), the interfering
particles are electrons which are illuminated by a very weak light source just after

passing through the dits. The scattered light may be observed independently and used
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Figure 2.1 (a) Einstein’srecoiling dit variation on Y oung’ s double-dlit experiment. A
photon en route to the screen collides with either the upper or the lower dit, imparting a
momentum kick which can identify the photon’ s path. (b) Feynman'’s light microscope
variation, in which aweak light source illuminates the electrons just after they emerge
from the dits. By detecting the photons in conjunction with the electrons, we can
determine which dit each electron traversed. In both experiments, however, the
uncertainty principle guarantees that if the measurements are sensitive enough to
determine “which-path” information, they will also result in an unavoidable * back-
action” on theinterfering particles that islarge enough to blur the interference pattern,
thereby eliminating wave-like behavior.



to determine which of the two dits a given electron passed through, again without
blocking either path to the screen.

In both scenarios it can be shown that the act of obtaining this*which path”
information disturbs the interfering photons or el ectrons to such a degree that the
interference fringes are lost. This occurs because both Einstein’ s recoiling slits and
Feynman'silluminating photons must be treated quantum mechanically. In the case of
the recoiling dits, one must determine their initial momentum precisely enough that a
change in momentum due to the collision with a photon may be detected. Heisenberg's
uncertainty relation for momentum and position then imposes alower bound on how
well-defined the position of the dits may be, which is equal to the spacing of the fringes
themselves [1]. Similar arguments reveal that the photons Feynman might have used to
identify the electron paths must exchange an uncertain amount of momentum with the
electrons, thereby deflecting them on their way to the screen and smearing out the
interference pattern [2,3]. Thus, in the foregoing cases, the uncertainty principle actsto
enforce complementarity by ensuring that if “which path” information is obtained, the
wave behavior will be destroyed.

These examplesillustrate the traditional way in which complementarity has been
understood to apply to wave-particle duality -- aways, it seems, thiskind of
complementarity is “protected” by the uncertainty principle, in the same way that
attempts to simultaneously measure complementary observables must always fail dueto
the inevitable back-action onto the system from the measuring device [4]. But must
complementarity always follow from the uncertainty principle? Remarkably, the answer
is“no.” Wewill see, in this chapter, an experiment which demonstrates wave/particle
complementarity as afundamental phenomenon, without using the uncertainty principle

inany way.
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2.1.2 “Which path” information in the Mach-Zehnder interferometer

It has been shown quite generally that in any optical interference experiment, the
visibility of the interference fringesis equal to the degree of intrinsic indistinguishability
of the photon paths[5]. If the paths can be made distinguishable in principle somehow,
then interference must vanish as aresult, even if the distinguishing information is never
recorded. To demonstrate this type of complementarity without invoking the uncertainty
principle requires some means of identifying the paths of the interfering particles that
does not disturb their motion.

Let us consider a photon which is alowed to take two different paths on its way
to adetector', asin the Mach-Zehnder interferometer shown in Figure 2.2 (a). Just
before the light is recombined at the final beamsplitter, its state is the superposition of

two Fock states

1 ¢ . .
), = ﬁ{e'%ml +e*|1),} 2.1)

where the subscript 1 isalabel for the mode of the upper path, and 2 denotes the mode
for the lower path. The phases ¢, and ¢, are equa towr, and wr, , respectively, where
ct, and ct, arethe optical lengths of the upper and lower paths from the initial
beamsplitter to the final beamsplitter. The light which emerges and is subsequently
detected is described by the annihilation operator

é:%(iéﬁé?). (2.2)

Over many trias, the average number of detected photons at the output will be given by

the expectation

! The following discussion is adapted from reference [6], in which the interfering particles were atoms.
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Figure 2.2 (a) A Mach-Zehnder interferometer. Light isincident on the beamsplitter
from the left, and may take path 1 or path 2 to the output beamsplitter, whereit is
recombined. A photodetector monitors one of the output ports of the beamsplitter. As
the phase difference between path 1 and path 2 is atered viasmall displacements of the
final beamsplitter (AS), the photon counting rate exhibits interference modulation. This
modulation occurs even if the incident light beam isweak enough that only one photon
isin theinterferometer at atime. (b) The same interferometer, but with the light in each
path coupled to an external observable with distinguishable eigendtates | A),, and |B),, .
Interference vanishes as aresult of the distinguishability of the interfering paths.
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2
(A =lahv}| =

1¢. . .
S{ieIvac) +¢* lvac)}

= _;(1+Sin(¢2 - ¢1)) (2-3)

which exhibitsinterference.

Now suppose that before the light is recombined at the output beamsplitter, it is
coupled to another system that can be found in one of two orthogonal states, | A),, and
IB},, , which are nondegenerate eigenstates of some observable o) ,asinFigure 2.2 (b).
The precise nature of the coupling is unimportant so long asit has the form

[, HITTE [1)| A,

o (2.4)
|1y, 9D |1} B,

We note two important features here: first, these relations indicate that the final state of
the auxiliary system is completely determined by which path the photon takes through
the interferometer; second, because the auxiliary states | Ay, and |B},, are orthogonal,
they may in principle be distinguished from one another in a single measurement of o)
by their eigenvalues. Therefore, a single measurement of observable O would constitute
adetermination of “which path” information for each photon in the interferometer..

Because of the interaction specified in (2.4), the initid state of the system must
now be amended to include states for the measuring apparatus as well asfor the light.
The new state may be written in the larger Hilbert space as

0w = {0, + 10,181} 25

This state is entangled, since it cannot be written as a product of two states in distinct
Hilbert spaces for the light and the measuring apparatus. If we now calculate the

number of photons arriving at the detector, averaged over many trials, we obtain

o1 (2.6)

A 2 |1y, ; i
A =Bl :|—2{|e'¢1|vac)IA)M v e lvach By )| =3
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Thereis no interference here; the terms which would have displayed a dependence on
the phase difference (¢, - ¢,) have vanished due to the orthogonality of the states | A,
and |B},, . As noted earlier, this orthogondity isthe very property which allows the path
of the photon to be unambiguoudly identified in a single measurement of O. This
means that the wave behavior is destroyed here not as aresult of the uncertainty
principle, but due to the presence of “which path” information within the measuring
apparatus. Note that the interference disappears even if no measurements are actually
made on the auxiliary system: the mere fact that the “which path” information existsis

enough to eliminate the interference.

2.1.3 Erasing “which-path” information

In view of the more traditional approaches to complementarity, one might
suspect that somewhere in the physical details of the coupling between the
interferometer and the measuring apparatus, an uncontrollable disturbance is acting to
destroy the interference. But thisis not the case, for it is possible to regain interference
while leaving the coupling between the two systems intact. All that isrequired, according
to complementarity, isthat the photon paths be made indistinguishable again. This
implies that the “which path” information stored in the measuring system must be
“erased” somehow, so that evenin principle it can never be accessed. As Scully and
Druhl first pointed out, al of this can be done without invoking the uncertainty
principle, and without altering the paths of the interfering particles[7].

Suppose that instead of measuring O on the remote apparatus, we chooseto
measure another observable, O, with eigenstates | A¢,, and |B¢,, which are given by

the linear combinations
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1
|A3, =—={IA +IB},]

‘/E (2.7)
1BS,, :TZ{|A>M - B}

No matter what state the measuring device wasin initialy, if the observable Otis
measured, the system must be found in one of the two states above. Note that these
states do not give “which path” information for the photons. In fact, once the system is
in either of the Ot eigenstates, it isequally likely that a subsequent measurement of o)
will put the system into state | A),, or |Bj},, , regardless of what the photons are doing.
Thus, by measuring Ot before ameasurement of O can be made, the “which path”
information can be destroyed forever (see Figure 2.3).

To show this more clearly, we first rewrite the quantum state of the system in the

form

111/ i0, 1 i i0, U

|X>[M = E{ﬁ(eﬂl}l +e"° |1)2)A¢M +ﬁ(e¢ 1), - e |:|_)2) B¢M K (2.8)
This stateisidentical to the one givenin (2.5), but we can see more clearly from this
expression for it that if the measuring apparatus is found in state | Ag), , thelight will be
found in the superposition state

T PUIPN 02113
vy = 5o+ e} (29)

Thisisthe state originally presented in Eq. (2.1), before the light was entangled with the
measuring apparatus. This state is capable of exhibiting interference, asis seen by

computing the expected number of photons at the output beamsplitter:

2

~ 1
IA\ —

Wy ==
2

lavy] =

2

i i
— {ie*|vac} +€&°z|vac)
J2

:%@+gd%-¢m. (2.10)
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Figure 2.3 The quantum eraser. If the external observable is detected in the basis

{IA), +1B),; |A), —B),} , the “which-path” information is irrevocably destroyed,
and interference returns for each subensemble of the photocounts that is correlated with
such measurements.
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The projection of theinitia state onto |\|;)f IS contingent upon a measurement of O«
being performed and yielding the eigenvalue for the state | Ag),, . Thus, in order to see
the fringes, we must make repested joint measurements of both the light and the
measuring apparatus, selecting only those events for which the measuring apparatus is
in state | A, . The subensemble selected in this manner will contain half of the total
events, thisisthe origin of the extrafactor of 1/ 2 in the preceding equation.

Similarly, whenever the measuring apparatus is found to be in the state | B¢, ,
the light will be in the antisymmetric superposition state

W = s {eim, - o). (211)

Here again we have interference, according to

2

}law)f\lz = —;‘%{iéq’llvac) - &*|vac)}

/A\ —
\ny =
2

= :11(1- sin(0, - ¢,)). (2.12)

Thisinterference will only be observed when the measuring apparatusisin state | B¢,
rather than | Ag,, . This second subensemble therefore contains all of the
photodetections that were missing from the first.

The interference fringes described by (2.12) are exactly 180 degrees out of
phase with those described by (2.10), and are therefore referred to as “antifringes.”? If
we do not select a subensemble of the photodetections by correlating them with one or
the other of the apparatus states, then the result for the light will be given by adding the
fringes and antifringes, which yields{n} = 1/2 once again. Thus, the interference which

was lost as aresult of the distinguishability of the photon paths cannot be regained if we

2 The term “complementary fringes” is often used, but may be confusing because the fringes and
antifringes are not complementary in the same sense as are noncommuting observables.
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continue to measure only the light -- we must correlate the light measurements with the
results of the O¢ measurements in order to see the interference.

Any apparatus in which “which path” information can be obtained and then
destroyed by correlation with an auxiliary measurement may be called a“ quantum
eraser.” Various proposals for accomplishing this have been presented and analyzed in
the last decade [7-19], though few have been carried out, and only two [14,16] have

qualified as true quantum erasers.’

2.2 Schematic and theory

2.2.1 Schematic of the experiment

Our scheme for creating a quantum eraser [16] is depicted in Figure 2.4. The
pump beam isincident from the left, and is split at the input to a Mach-Zehnder
interferometer. Each arm of the interferometer contains atype-1 parametric
downconverter (NL1, NL2), which converts asmall fraction of the x-polarized pump
photons in modes p1 and p2 into pairs of y-polarized signal and idler photons. The
signal beams are allowed to continue through the interferometer in modes s1 and s2,
and are ultimately recombined at beamsplitter BSs and sent to detector A. Meanwhile,
the idler beam from NL 1 passes through a half-wave plate (R1) that rotates its

polarization from y to x; accordingly, we label theidler modes from NL1 and NL2 asix

and iy, respectively.

3 Reference [13] contains an illuminating discussion about what features distinguish true quantum
erasers from other demonstrations of complementarity. Three “true quantum erasers’ are proposed there,
one of which isvery similar to our experiment. An earlier experiment [12] by the same authors is then
regarded as not being an optimal demonstration of a true quantum eraser.
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pl

Figure 2.4 Experimental realization of a quantum eraser. The pump beam is split at the
input and is downconverted in either NL1 or NL2. The signals are allowed to interfere,
whiletheidlers carry the "which path" information which may be erased.



2.2.2 Quantum state of thelight
The interaction Hamiltonian for this system is the sum of the Hamiltonians for
each downconverter:
HI = H 11 + H 12

L o (2.13)
= [gaplaSTlat( + gaDZaSTZdE’] +hc

Each interaction in the brackets specifies the annihilation of a pump photon and

simultaneous creation of asignal and idler pair in the modes specified above. This

provides a coupling of exactly the form required by Egs. (2.4), as shown explicity by
H| |1) pl = ql>sl|]>ix

~ (2.14)
AL, = db,ID,

Heretheidler polarization playstherole of the externa observable O and takes on one
of two distinct values depending on the path of the signal photon.

Because the pump field is generated by alaser, it is more accurately represented
by the coherent state |V,} than by aone-photon fock state. After the first beamsplitter,
theinitial state of the system isthe direct product of two coherent states for the pump

beams in modes p1 and p2 [20] with the signal and idler modes in the vacuum state:

AN A AR
== 5 |Vacss iX,i
J2[ V2],

ly (0)) = (2.15)

If the interaction isweak, the state of the light after the downconverters may be found by

the perturbative method in Chapter 1. Theresultis

1
ly) =|vacy +n —=1I1 | T + 1} |1,
\/5{ * ) (2.16)

=|vacy +n|y @},

wheren is acreation efficiency parameter satisfying
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i’ <<1. (2.17)

Since the vacuum will not contribute any photodetections, we may use the state
hy®) = = {ll)sLll)ix +|1)52|3iy} (2.18)

to compute the expectation values of any measured quantities. Note that this state has

the same entangled form asthe onein Eq. (2.5).

2.2.3 Predicted counting rates

The single-mode field operator for the light at detector A isgiven by
~ 1 0. A
) — 013 i0,
E. ﬁ(le a, te asz) (2.19)

~ 12
where ¢ isaunit constant with dimensions such that the intensity |E Al isin units of
photons per second. If the photodetector A is perfectly efficient, it will detect photons at
the rate

R.= (v [EVEY

y) =[Oy O = é (2.20)

which does not exhibit interference, in analogy with (2.6). Thisisto be expected,
because in principle a measurement of theidler polarization could reveal which crystal
produced each signal photon. In the scheme of Figure 2.4, thisinformation is accessed
by combining theixand iyidler modes at BSi and sending them through a polarizing
beamsplitter, whose outputs are monitored by detectors B and C. The field operators at

these detectors are

E(+ J_ aTy

\/_ax

(2.21)
(+) —
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It isnot suprising to find that in this configuration, the joint detection rates

— 1 OIEC) EC) EH)EH)
Ragac =\ En'EgcEa Esc

Z(+) ~+ 2 1
v)=[ERE v ) =5 (222)

do not display interference’.

The quantum eraser isformed by insertion of a half-wave plate (R2) into the
mixed idler beam with its optical axis oriented at 22.5° to either the x or y polarization.
This has the effect of rotating both polarizations by 45, so that the fields at detectors B

and C become
A~y lpa "
Eg" = E(de(py +3ﬁxé¢*)

A ’ A _ (2.23)
Eéf) — E(éiye“py - 4 % )

Measurement of theidler polarization in this rotated basis (x +y, x- y), by detecting
theidler a B or C, is equivaent to measuring the observable Otinthe previous section,
so that the “which-path” information is permanently erased. Accordingly, the
interference must return for each subensemble of signal photons detected in coincidence

withtheidlersat B or C: the interference fringes are displayed by

~ ~ ~ ~ A~ ~ 2

RE, =<\If ‘1)|E§)E§')E§\+)Eéﬁ+) \lf(l)> = [E(ESY ‘V(l)>|
1 (2.24)

=7 (1+cos(o; - 9, +Q))
while the antifringes are seenin

~ A~ ~ A~ A~ ~ 2

RE. = <W(1)|E£>E§-)E§>E§+> \lf(l)) =|E,§+>Eg£+>q; o >|
(2.25)

= :11(1 cos(p, - ¢, + Q))

* These probabilities sum to 1/2, rather than 1, because only half of the idler photons are collected
from BSi in this arrangement. If a polarizing beamsplitter were used for BSi, this would be avoided.
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Here Q° o, - o, isan overall phase shift acquired by theidlers during propagation to
BSi.

2.3 Experimental procedure and results

2.3.1 Apparatus

For the experiment, the pump was a 250 mW ultraviolet laser beam generated by
acw Argon-ion laser operating at a wavelength of 351 nm. The downconverters NL1
and NL2 were 2.5 cm long LilO, crystals cut for type-l phase-matching. The mean
signa and idler wavelengths were chosen to be 789 nm and 633 nm, respectively, so that
the idler paths could be more easily aligned with the help of a HeNe laser beam. To
observe interference fringes, BSs was mounted on a piezoel ectric ceramic transducer
(PZT). The PZT expanded linearly in response to an applied voltage, at the rate of about
2 nm per volt: this allowed the relative lengths of the two paths to be varied on ascale
comparable to the wavelength of the light.

The photodetectors were EG& G model SPCM-200 aval anche photodiodes with
dead time of about 150 ns and quantum efficiency of about 50% °. The 150 ns TTL
pulses generated by the detectors were used to trigger discriminators; these, in turn,
emitted 4.5 ns NIM pulses that were fed to single-channel counters and to a coincidence
counter. The detector jitter time of about 4.5 nsimplied that any signals reaching the
coincidence counter within a resolving time of 9ns could have been due to the
simultaneous arrival of photons at the pair of detectors. The number of “accidental”

coincidences due to uncorrelated photons that could occur in this time was computed

® The imperfect photodetection efficiencies have the effect of scaling all of the predicted counting rates
by linear factors; these factors do not affect the ability of the apparatus to display the fringes and
antifringes, and were omitted from the preceding discussions for the sake of clarity.
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from the measured single-channel counting rates and the coincidence resolving time,
and subtracted out.

1 nm-bandwidth filterswere placed in front of the detectorsto eliminate
background noise. For the signal beams, the range of frequencies selected by these
filters corresponded to a coherence time of roughly 2 ps for the photon wavepackets, so
that the optical path lengths of the two possible photon paths in the interferometer were
required to be equal to within 600 nm for interference to occur. Lenses were also placed
in front of each detector to focus the light onto their 100 nm-diameter active aress.

The pump laser delivered an average of 4x10"" photonsto theinitial beamsplitter
per second. However, the downconversion efficiency was very low -- the probability of

agiven pump photon producing asignal/idler pair was only
mi° @0 ™, (2.26)

in keeping with (2.17). It was therefore extremely unlikely that each crystal
independently generated a photon pair within the 2 ps coherence time required for the
signalsto overlap at the final beamsplitter, so that only one signal photon at atime was

in the interferometer.

2.3.2 Results

Starting with the input of a pump photon at the initial beamsplitter, we see that
there were two distinct ways for asigna photon to reach the final photodetector within
the coherence time: either the pump photon traversed the upper arm and was
downconverted at NL 1, or it traversed the lower arm and was downconverted at NL2.
These two paths were distinguishable, becausein principle, any signal measurement at A

might have been correlated with an idler polarization measurement, which would have
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revealed the origin of the pair. Accordingly, the signals did not display interference, as
seenin Figure 2.5.

However, when we erased the “which path” information by detecting the idlers
inthe 45 rotated basis, the interference fringes returned in each subensemble. The
coincidence counts from detectors A and B displayed fringes, while the coincidences
between A and C revealed antifringes. The recorded fringes and antifringes are shown

in Figure 2.6.

2.4 Discussion

2.4.1 Comparison with the“quantum preventer” of Zou et al.

It has been shown that a more direct means of destroying the information about
the origin of the signal photonsis simply to align the path of idler 1 so that it overlaps
completely with that of idler 2 everywhere [21,22]. This makestheidlersforever
indistinguishable, owing to the fact that they belong to the same mode, so that the
“which path” information for the signals cannot be obtained, even in principle. In this
elegant demonstration of complementarity, which has been called “Induced coherence
without induced emission,” the signal interference returns without the need to observe
theidlersat al, asshownin Figure 2.7 (a).

Inthis casg, it istempting to speak of the overlap of the idler beams as
“erasing” the which-path information for the signals [23]. But it is more accurate to
say that when theidler paths overlap, the which-path information is not so much erased
asit isprevented from ever existing. It isthis fact which accounts for the return of the
interference of the single-channel counts without the need to divide them into “fringe”
and “antifringe” subensembles -- see Figure 2.7 (b). Thislack of post-selection

through coupling to an external observable iswhat ultimately prevents this apparatus
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Figure 2.5 Measured single-channel and coincidence counts when the paths of the

photons were distinguishable. The coincidence counts have been corrected for

accidentals.
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Figure 2.6 Measured single-channel and coincidence counts when the paths of the
signals were distinguishable, but the paths for coincidence detection were
indistinguishable. The coincidence counts have been corrected for accidentals.
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Figure 2.7 (a) Experimental arrangement which makesthe signal paths
indistinguishablein principle. Here R1 does not alter theidler polarization, so that the
idler paths overlap completely. (b) Measured single-channel photodetections for the
above apparatus. Interference returns for the signals without the need to select a
subensemble via an auxiliary measurement. Thisis not a quantum eraser.
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from being atrue quantum eraser.® Similar arguments also prevent at least two other
interference experiments [12,25] from qualifying as quantum erasersin the strict sense

[13].

2.4.2 “In principle’ vs. “in practice” distinguishability revisited

In the introductory chapter, we asked what the implications would be for
interference in a 2-dit interferometer if we wereto allow each dlit to create a“ marker”
as the photon passed through it, without disturbing the path of the photons themselves.
The experiment described in this chapter corresponds to exactly this situation: the idlers
play therole of the markers, while the signal photons compl ete the paths begun by the
pump photons (see Figure 2.8). The “final screen* where the interfering photons are
registered is analogous to detector A, and we explore different parts of the interference
pattern by actively changing the relative phase between the two arms and counting

photons according to
Ry EVE y) . (227)

This expectation vaue, which is of the second-order in the field operator, exhibits
interference modulation whenever it isimpossiblein principle to identify which path a
photon may have taken to arrive at the detector. As shown in Eq. (2.20) and Figures 2.5
(a) and 2.6 (a), thiskind of interference never occurs in the quantum eraser experiment,
because the marker photons aways have the potential to identify the signal paths.
However, if the markers are manipulated properly and subsequently measured
along with the signalsin away that prevents them from identifying the signal paths,

interference returns. The events of this type are coincidence counts of the form

8t may not be a quantum eraser, but this experiment has been called a“remarkable” [13] and “mind-
boggling” [24] demonstration of complementarity by other researchers.



Figure 2.8 The quantum eraser presented as avariant of Young's double-dlit
experiment. The marker (idler) photons are generated at points B and C, while the signd
photons continue undeflected towards the screen. If the markers are measured in the
“eraser” basis, the fringes and antifringes may be seen at the screen in conjunction
with these measurements. Viewed without these correlations, the complete ensemble of
events at the screen does not display interference, because the paths ABD and ACD
remain distinguishable in principle.
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R. 1 {w|EVEVENEN ). (2.29)

In the quantum eraser, it is only these fourth-order measurements which display
interference.

The standard interpretation, presented in this chapter, views this coincidence
modulation as akind of “gated second-order” interference, in which pathsfor the
single-channdl events within the fringe and antifringe subensembles have been rendered
“indistinguishable in practice” by the appropriate detection of the marker photonsin
the rotated basis -- so long as the markers are actually detected in this basis, the signal
paths are indistinguishable. But strictly speaking, the quantum eraser does not actually
recover the second-order interference of the signal photons, because the signal photon
paths remain distinguishable in principle viaan auxiliary measurement, whether or not
they are actually distinguished in practice. Instead, the quantum eraser displays fourth-
order interference on those occasions when the sets of signal and idler paths leading to
coincidence detection are indistinguishable in principle.’

In the quantum eraser, then, we see a clear demonstration of the principle of
complementarity for wave and particle behavior: interference occurs between
indistinguishable pathways that lead to the fina event. One must keep in mind, though,
that “events’ may involve severa particles, that “pathways’ may include the multiple
paths traveled by these particles, and that the pathways must be indistinguishable in

principle, and not just in practice.

" The “ quantum preventer” discussed in the previous section does not make this distinction, because it
shows a return of second-order interference whenever those paths are made indistinguishable in principle
by overlapping theidlers.
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Chapter 3
Spectral distinguishability and interference

3.1 Introduction

3.1.1 Ultrafast pump pulsesand type-11 downconversion

Up to this point we have been discussing experiments involving type-|
parametric downconverters pumped by acw laser source. But as we noted in the first
chapter, there are situations in which it might be advantageous to use type-I1 phase-
matching instead; in particular, this allows the possibility of constructing common-path
interferometers, in which the signal and idler beams are emitted collinearly and
separated later viatheir orthogona polarizations.

Moreover, there are aso advantages in using a pulsed, rather than cw, pump
source. When the pump is cw, the photon pairs are produced at random times so long
asthe pump isturned on. Although we have not made explicit use of the multimode
state for the photon pairs generated with cw pumping, it is shown in Appendix A that
the signa and idler photon wavepackets may actually be quite short, only afew ps, in
duration. So long as we are only interested in interference experiments involving one set
of downconverted photon pairs at atime, thisis not a problem, since the two members
of the pair are emitted simultaneoudy. But if we are interested in performing multi-
particle interference experiments, like the GHZ nonlocality experiment mentioned in
Chapter 1, for example, the random photon emission time and the short photon
wavepackets makeit very unlikely that the photons from one downconverter are
generated at the right time to interfere with those emitted from another. A pulsed pump

has the potential to solve this problem, because if a photon pair is produced, it must be
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created while the pump pulse isinside the downconversion crystal. In the domain of so-
called “ultrafast” lasers, pulse durations on the order of 100 fs are now routine. It
might seem atrivial matter, then, to pump severa thin crystals smultaneously and to
synchronize their emissions to within the few ps needed for the various signal and idler
wavepackets to overlap within the apparatus.

It may seem straightforward, but aswe will see below, if we wish to use type-l|
phase matching along with an ultrafast pump pulse, we must tread carefully into the
domain of quantum interference. We have already encountered several examples of the
intimate relationship between interference and indistinguishability. In this chapter, we
will seethat the broad bandwidth of an ultrafast pump pulse, in conjunction with the
birefringence of the type Il downconversion crystal, produces distinguishing “which-
path” information in the spectral domain that effectively destroys the potential for
interference of these photon pairsin at least one apparatus—the Hong-Ou-Mandel

interferometer.

3.1.2 Fourth-order interferencein the Hong-Ou-M andel inter ferometer

In the quantum eraser experiment, we have an example of fourth-order
interference, in which interference fringes can be seen in the coincidence counts
generated by the simultaneous detection of signal and idler photons at two detectors.
The Hong-Ou-Mandé interferometer (HOMI) [1] is another type of fourth-order
interference apparatus, displayed in Figure 3.1. The signal and idler photons from a
parametric downconverter areincident on a“symmetric” beamsplitter having
reflectivities and transmissivities

1
R=R¢=iT=iT¢t=—. 3.1
7 (31
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Figure 3.1 The Hong-Ou-Mandel interferometer, in which two photons produced in the
process of parametric downconversion are brought together at a beamsplitter. The
output ports of the beamsplitter are monitored by apair of photodetectors which register
coincidence counts. When the beamsplitter is positioned correctly, sothat it is
impossible in principle to determine whether a coincidence count occurred via double-
transmission or double-reflection, these two coincidence paths interfere destructively
and result in a coincidence counting rate of zero. If the beamsplitter is moved away from
this position, the destructive interference is degraded because it is now possible to use
the relative timing of the two detections to determine whether a double-reflection or
double-transmission actually took place. Asthe two paths become more and more
distinguishable, the coincidence counts rise from zero to the nominal “background”
rate of half thetotal pair production rate. The “dip” in the plot of coincidence counts
vs. beamsplitter position is a signature of quantum interference for the photon pairs.
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A pair of photodetectors monitors the output modes of the beamsplitter, which are
related to the input modes by the usual transformations:
a, =Ra, +T
?2 Aao ?1 : (3.2
a; = Ta, + Rl
In the smple monochromatic mode treatment, the state of the light produced by the

downconverter is
ly) =Ivac) +n| T J1), . (3.3)
The predicted coincidence counting rate is then given by
[ AN - —|5 45 2
Re B W fy i) = Radw )
A~ ~ ~ 2
=|(R& + T & )(T4, + R&,{Ivac} +nlLy 1), } - (3.4)
= In|*|RR¢vac} + TT ¢vacy’
The last line shows that the coincidence counting rate is the squared modul us of

the sum of two quantum-mechanical amplitudes for the processes that lead to

coincidence counts: double-reflection and double-transmission. Using the relationsin

(3.1) leads usto

1 1 ?
—|vac) - =|vac
2 2 .

R, I’
=0

(3.5)

That is, because of the net phase-shift of 180° between the double-reflection and double-
transmission amplitudes, the two processes destructively interfere and result in no

coincidence counts. What is inferred from thisis that when the two photons meet from
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different sides of a symmetric beamsplitter, they must both emerge in the same
direction, that is, into mode 2 or mode 3.
If, instead of the monochromatic two-mode state in (3.3), we analyze the HOMI

when the light isin the cw-pumped multimode state derived in Appendix A,

p

¥
hyy =Ivacy +1 ¢l F (0,0, - 0 J8,. JBy o 0. (36)
0

we find that the coincidence counting rateis
R, whl[L- e ], 3.7)

where cdt isthe displacement of the beamsplitter from the central position in which the
signal and idler photon path lengths to the beamsplitter are identical. Heret, » 1/ Do is
the coherence length of the signal and idler wavepackets, where Do  denotes the
bandwidth of the phase-matching function F for each downconverted field. Equation
(3.7) predicts a coincidence counting rate of zero for the symmetric beamsplitter
positiondt = 0, and arising rate as the beamsplitter moves away from this position.
Thisisan indication that, for positions other thandt = 0, the destructive interference of
the doubl e-reflection and double-transmission paths is no longer complete; in fact it
vanishes entirely when the signal and idler path lengths to the beamsplitter differ by
morethan ct, . Inthat case, the two coincidence paths are completely distinguishablein
principle from the relative arrival time of each photon at its detector. When the time
delay islonger than the coherence time of the wavepackets, the order in which the
detectorsfire is enough to reveal which of the two coincidence paths actually generated

the event.

1 Of course, the choice of exit mode (2 or 3) is not actually made by the photons until a measurement
forces the issue. Until then, the photon pairs are in a superposition state of having chosen mode 2
together or mode 3 together.
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Interestingly, it does not matter whether we have photodetectors with sufficient
time-resolution to actually make the necessary distinction as to which photon arrived
first. Thefact that our (slow) photodetectors are often unable to revea which of the two
processes generated the coincidence event might seem to make the processes
“indistinguishable in practice”, but as we have aready seen, thiskind of
indistinguishability — which comes from ignoring information that is really present in
the system — is not good enough to generate interference. It remains possible, in
principle, to use faster photodetectors and discover which process led to the event,
provided that |pt| 2 T, and thisiswhat prevents the two-photon detection amplitudes
from interfering with each other.

On the other hand, if the light itself is modified before it reaches the
photodetectors, this can have an impact on the interference. For example, if thesignal
and idlers are sent through a narrowband filter which increases their coherence times,
then the “dip” becomes wider as the new coherence time plays therole of <, in (3.7).
Thisisin keeping with our maxim that “indistinguishability in principle” is what
matters, because for the light that survives thefiltering process, no photodetector timing
resolution can be high enough to provide complete “which-process’ information for
delaysinside this (widened) dip structure. The information does not exist, because the
photons may be found anywhere inside their wavepackets.

Severa variations of the HOMI experiment have been carried out in recent
years,[2-11] usualy with the aim of demonstrating the effects produced by various
kinds of distinguishing information for the coincidence processes. Most of these
experiments have been conducted with cw-pumped type-I downconverters. A few have
used cw-pumped type-11 downconversion, with signal and idler photons sometimes

incident on apolarizing beamsplitter (PBS), rather than a conventional beamsplitter.



The experiment reported in this chapter is yet another variation[12], in which an
ultrafast pump is used for the type-11 downconversion. Aswith other variations, this
experiment was undertaken with the idea of exploring the effects of distinguishing
information on the “dip” visibility. We chose to look at thisinformation as “ spectral”
in naturef 13], but it is aso worth noting that asimilar set of experiments was recently
conducted and fully analyzed in the time domain [14,15]. The two ways of expressing
the distinguishing information are of course equivalent, and this has been shown
recently by Grice[16]. In the interests of smplicity, we will focus only on the spectral

interpretation.

3.2 Schematic and theory

3.2.1 Schematic of the experiment

Wewill investigate the effects of ultrafast pumping on the interference visibility
for photon pairsin the collinear HOMI. A schematic of this system is shown in Figure
3.2. An ultrafast pump pulse isincident from the left on anonlinear crystal (PDC) cut
for type-1l phase-matching. Inside the crystal, the pump pulse has a small chanceto
produce a pair of signal and idler photons, polarized along the 0 and e axes of the
crystal, respectively. The signal and idler beams exit the crystal collinearly. Because the
crystal is birefringent and imposes different degrees of dispersion ontheo and e
polarizations, the group velocity insideit is higher for the idler, which emerges ahead of
the signal. Thisisreferred to as “temporal walk-off.”

The signa and idler are next transmitted through a series of birefringent quartz
plates. These plates can be inserted separately in various combinations to create a
variable delay ot between the signal and idler wavepackets. The signal and idler then

have their polarizations rotated through 45° by the| /2 plate, and enter the polarizing
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Figure 3.2 The collinear Hong-Ou-Mandel interferometer. The photon pairs are
produced by type-1l parametric downconversion from an ultrafast pump pulse, and
emerge with orthogona o and e polarizations. Because the downconverter is
birefringent, the o-polarized signal lags behind the e-polarized idler. The photons travel
through severa birefringent quartz plates, imparting anet relative delay of 6t between
the signal and idler wavepackets. Thel /2 plate then rotates both polarizations by 45°,
and the photons enter the PBS, which transmits the horizontal polarization while
reflecting the vertical. Since the rotated signal and idler polarizations are equaly
weighted superpositions of these two, each has a 50% probability of being projected
into the vertical or horizontal output mode. This leads to two distinct two-photon paths
for coincidence counts, whose amplitudes are expected to interfere destructively when
ot =0.
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beamsplitter (PBS), which has its selection basis matched to theinitial o and e
polarizations. Because each photon has a 50% chance of being reflected or transmitted
by the PBS, there are two equally probable ways for apair of photodetectors monitoring
the output portsto register coincidence counts. Asin the type-l HOMI, the amplitudes
for these processes are 180° out of phase with each other, so asto cancel al
coincidencesin the cases where they are indistinguishable.

In the experiment we record the coincidence counting rate as a function of the
delay &t. The extent to which the rate dips down to zero at its minimum isthen a

measure of the indistinguishability of the coincidence paths.

3.2.2 Quantum state of thelight

The quantum state for the downconversion produced by a single pump pulse
can be obtained from the appropriate interaction Hamiltonian, by letting the resulting
time evolution operator act on the input vacuum state, and truncating the resulting state
to the lowest nonvanishing order in the perturbation’. The state of the downconverted

light in the interaction pictureis then

hy) =|vacy +ndwd & o (©, +o,)F (@0, ) o} |o.)

o/ol*e/e
Po e (3.8)
=Ivacy +ny ™),
where the labels 0 and e denote the polarizations and frequencies of the signal and idler,
respectively, T isthe interaction time equal to the pump pulse duration, and dw isthe
mode spacing. This state is a continuous superposition of two-photon states, in which

the probability amplitude for each pair of frequenciesto be emitted is the product of the

spectral pump envel ope,oc(o)O +(oe), and the phase-matching function F (o)o,u)e).

2 See reference [16]. For an explicit derivation of this state, see Appendix B.
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The creation efficiency parameter 1) is defined as

00N
ngi;lzo (39)

wherethe /7, arethe dimensions of theinteraction region, |\/0|2 isthe peak intensity of
the pump pulse, and g is a coupling constant between the pump ad downconversion
modes that contains whatever units are necessary to ensure that 1 is dimensionless. This
state is valid in when the “nondepleted pump” approximation holds, for which we

require
l{y @) <<1. (3.10)

The spectral pump envelope a isthe Fourier transform of the time-dependent
part of the classical pump field. The amplitude spectrum of asingle pump pulseis
assumed to have a normalized gaussian form with bandwidth G, centered at twice the

mean downconversion frequency 2o,

o +0 - 28 &
( + )_ 2 '?)TE 3.11
o\, T, —me . (3.11)

o isreal and has unitsthat ensure |\|1(1)> is dimensionless. It iswritten asol(w, +o,) to
remind usthat in the long interaction time-limit, only those photons are emitted whose
signal and idler frequencies sum to the pump frequency®. Plots of this function for
severa different bandwidths are displayed in Figure 3.3 (a).

Of course, for agiven pump frequency, there are an infinite number of values
foro, ando, that satisfy o, = o, + .. The relative amplitudes for emission of all

these possible combinations are determined by the phase-matching function,

F (0,,0,) = Snd3[k,(0,) + k(o.) - k (o, +o,)]L). (312)

3 This satisfies the energy-conserving phase-matching condition. See Appendix B for details.
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Figure 3.3 Pump envelope function oc(oaO +o e) for three different values of the pump
bandwidth (a) and the phase-matching function F (mo,me) for BBO (b). Asthe pump
bandwidth gets larger, more of the asymmetric character of F (mo,me) isrevealed inthe
joint emission amplitude spectrum S(mo,me) (¢). Consequently, the marginal signal and
idler spectra are more dissmilar.
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where L = 7, isthelength of the crystal along the direction of propagation. If the PDC
is oriented for optimal downconversion at the mean pump, signal, and idler frequencies

so that k(@) + k(@) - k,(205) = 0, this function may be approximated by

F(coo,(oe)@sinc(%[(mo- ®)kg+ (o, - ®)kg- (0, +o, - 2(3)kg:]L)

(3.13)
= sindl3[(o, - B)kg- kg)+ (o, - @) (ke- kg)]L)
0Ky e ok, . o
The parameters k¢, © e and k¢° T aretheinverse group velocities within the
[0} 2@

PDC*. Thisfunction is depicted in Figure 3.3 (b).
Figure 3.3 (c) shows what happens when these two functions are multiplied

together to produce the joint two-photon emission amplitude spectrum,
S(o,0,)° a0, +0,)F (@,0.). (3.14)

The magnitude of this function determines the relative likelihood of emission for the
various possible signal and idler frequenciesw, andw, . By integrating over one or the
other of these frequencies, we can obtain emission spectrafor just the signal or idler
wavepackets. We see from these margina distributions that for a narrowband cw pump,
the signal and idler spectra are identical, but for a broadband pump they are not. This
asymmetry occurs because the phase-matching function in (3.13) depends on the
inverse group velocities k¢ and k¢, which are not identical for the two different
polarizations within the birefringent type-11 crystal. Therefore, the ranges of frequencies
determined by F for the signal and idler are not the same. This carriesimplications for
interference, because, in principle, measurement of the frequencies of these photons
could sometimes reveal whether it wasthe signal or theidler that was detected. In other
words, the emitted signal and idler photons have become at least partially “spectrally

distinguishable” from each other, which reducesthe visibility of interference effects.

* For type || downconversion in BBO, the pump must be e-polarized (see Section 1.3.3).
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3.2.3 Predicted counting rates
3.2.3.1 Two-photon coincidence probabilities from one pulse

How does this “spectral distinguishability” impact the two-photon interference
in our interferometer? L et us calculate the expected rate of coincidence counting for the
apparatus described above. For asingle pump pulse, the probability that D, registersa
photon within atimeinterval dt, centered at timet, and that D, registers a photon
within dt,; centered at t; is p AB(t A,tB) dt,dt, . The instantaneous probability density p,;

is given by the normally ordered expectation value
Dt 50.0) = (| EE (1 )JEL (L) EL (1 )JES 1) )

i ) (3.15)
= [E(L)ES ()

where the dimensions of |I§ A B|2 are photons per second. For the moment we are
assuming perfect detection efficiency for D, and D,. Because of the PBS, the electric
field which impinges onto D, isthe sum of the vertical projections of theeand o
downconversion fields after they have been time-delayed by the quartz and rotated
through 45 degrees by the | /2 plate:

EV (t60) = % [E(t - 81) + E(1)]. (3.16)
Likewise, thefield at D isthe horizontal projection
EQ(t:51) = £ [EX(t - 81) - EV()] (3.17)

The electric field operators for the e and o modes each have Fourier decompositionsin

terms of their own frequency-specific annihilation operators, given by

—(+ 8 2 A -io
ES(t) = 2—(7’3a &, ()™, (3.18)
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so that we may rewrite the time-dependent field operators at the detectors as

oM o

EO () =\ [ & [A(0)e™ +4,(0)]e

e

(3.19)

OO

A

EQ(t; ) = “’a.jf[ae (@)™ - 3,(w)]e "™

Substituting (3.19) and the state (3.8) into (3.15) and taking the limit 8w ® 0 yields

2 ¥¥
Pag(tate8T) = % OcFo, do o (o, +o,)F (0,.0,)
00 (3.20)
- {e—i[me(tA— 51)+m0tB] I[me tg-81) +motA]}|VaC>|2

for the instantaneous coincidence probability density. The probability of obtaining a
coincidence count regardless of the exact time of arrival for each photon isfound by
integrating this probability density over all possiblet, and t; values within the
coincidence time. Because this coincidence time (usualy tens of ns) is much longer
than the duration of the pump pulse (afew hundred fs), we are justified in extending the

time limits of integration to +¥ and writing

¥ ¥

Pe (&7 ) = C\X\}thdtB pAB(tA 15,01 ) : (3.21)

-¥-¥

After substituting (3.20) into this and carrying out the time integration, we obtain the

result

2¥¥

Ru(50) =15 Qo o oo, + 0. {[F (o, 0.

-F'(0,,0,)F (0, ,me)é(“’““’e)&}.

(3.22)
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Becausen is small, this probability never approaches 1: we must keep in mind that in
the weak-interaction approximation, the most likely outcome isthat no downconversion
isproduced at all.

Thefirst termin (3.22) isan integration of the total two-photon probability
density distribution over all frequencies, and represents the total “background” rate of
coincidence detection independent of dt. The second term, which contributes only for
small values of 47, isthe source of the coincidence “dip” observed in the traditional

HOM I experiments.® For 8t = 0 the coincidence rate reaches zero if
F.0.) =F (@.0)F 0.0 (323

over the entire range of frequenciesthat contribute to the integra in (3.22). As
discussed above, this range is set by the bandwidth of the pump spectrum specified by
(x((oo +o e) . Equation (3.23) would be satisfied if the phase-matching function were
symmetric under exchange of the signal and idler frequencies, however, we have aready
noted that the phase-matching function for type-I1 downconversion does not possess
this symmetry. Furthermore, because the range of sum-frequencies allowed by an
ultrafast pump is quite broad, the value of P, (5t ) can be appreciableeven at 8t =0,

which degrades the interference visbility of the dip.

3.2.3.2 Symmetry and indistinguishability
Why should the two-photon interference visibility be sensitive to the symmetry
of F(o,,0,)?Wewill pause here to examine this question in more detail. Consider the

two coincidence processes depicted in Figure 3.4, and suppose for the moment that we

® The complex conjugation of F isincluded for the cases in which the origin is chosen at a point other
than the center of the interaction region, leading to a complex-valued phase-matching function. See
Appendix B.
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Figure 3.4 Two distinct processes may lead to the detection of a particular pair of
frequenciesw, andw, at detectors D, and Dj: reflection of the idler and transmission
of the signal (a) or transmission of theidler and reflection of the signal (b). The
amplitudes for the emission of photon pairs with the correct frequencies for these two
cases (shown to the right) lie across the line of symmetry o, = @, from each other.
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are employing photodetectors D, and Dy with very high frequency resolution, so that
they identify the frequencies of their detected photons asw, andw,, , respectively. This
coincidence event could have come from either of two distinct processes. Figure 3.4 (a)
shows reflection of thesignal (so that , = ®, ) and transmission of the

idler(w, = wg): the amplitude for the signal and idlers being emitted with this

combination of frequenciesis
S0, = 04,0, =0p) =00, +0,)F (0,.00). (3.24)

Figure 3.4 (b) shows the second process, reflection of theidler (o, =®,) and
transmission of thesignal (®, = w;): the two-photon emission amplitude for this

combination of frequenciesis
S((J)0 :(oB,(oe:(oA)=0c(wB+0)A)F(0)B,0)A). (3.25)

If the amplitudes for these competing two-photon processes are not equal, it ismore
likely that one or the other of them actually generates the coincidence event. In fact, one
might be able to identify the actual signal and idler paths with certainty, if the amplitude
for the other set of paths were zero. The degree of exchange symmetry in F (o,,0,) is
therefore an indicator of how “spectrally indistinguishable” the possible photon pairs
will be from one another, and thisiswhy it controls the degree of “dip” visibility.

Of course, for the experiment we did not use detectors with the high frequency
resolution required to make these distinctions. Once again, though, this
“indistinguishability in practice”, which comes about from ignoring the spectral
“which-path” information after the light has been detected, is not enough to restore the
dip visbility. The fact that the two-photon paths are distinguishable, in principle, isall

that is required to degrade the interference.
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This discussion suggests another approach for improving the interference
vishility, namely, modification of the spectral characteristics of the light itself, so that
the distinguishing information islost before the light reaches the detectors. Theideais
to use spectral filtersto restrict the range of detection frequencies to just those regions
where the signa and idler frequencies are most smilar -- that is, to the regions where
F (o,,m,) isnearly symmetric. The two-photon events that are the most distinguishable
would then be the ones that were discarded by the filters before reaching the detector.
This method of discarding quantum information to regain interferenceis very muchin
the spirit of the quantum eraser, and has even been performed before in the context of
polarization measurementsin atype | HOMI [2] . However, it isnot atrue “quantum
eraser” in the strict sense, because it does not involve recovery of fringesand
antifringes as subensembles of alarger data set via correlation with an auxiliary
measurement [17] . In this scenario, it is the interfering particles themselves, the “two-

photon entities,” that are being selected or discarded to improve interference.

3.2.3.3 Coincidence counting rates

We will now complete our calculations for the expected coincidence counting
rates. The photodetectorsin our laboratory are not perfectly efficient. We will assign
each detector, D, , aquantum efficiency O£ o, £1 that reflects the fraction of
impinging photons which actually cause a photoel ectric pulse to be emitted. In our real
apparatus, there will also inevitably be losses due to absorption or unwanted reflections
at al of the various optical interfaces. The percentage of emitted photons that arrivein
each single-channel of detection will be denoted by acollection efficiency 0£ 3, £1.

After multiplying the single-pulse coincidence probability (3.22) by all of these factors,
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and by the pulse repetition rate R, we have an expression for the expected coincidence

counting rate in the experiment:

R,(57) = mocAocBBAB R[B- D@1)]. (3.26)

Here

2 _ 42 (3.27)
ot '
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00

isthe degree of spectral overlap for the photons created in the two downconversion

processes, while

¥¥
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isthe“dip” generating term that depends critically on the symmetry of F. In these

expressions,
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is the maximum difference between the group delays experienced by the pump pulse

and theo-wave or e-wave, after traveling the entire length of the PDC, and

ok ©

00 | @

T %T,-1T,= Lga (3.30)

(O]

is the maximum temporal walk-off between the signal and idler photons. It is convenient

to re-express (3.26) in the form
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L R R(t, +t)@ Pl rot gl
RAB(ST)—RABolT—Z-G(T +Te)erf% A %rect§ TE% (3.31)

Ruso =M 0 x05B ABsR,B (3.32)

isthe number of pairs per second that would be counted by the detectors without the
PBSin place. The nominal coincidence counting for [5t| >1_ /2 (outside the dip) is half
this value, which reflects the fact that in the absence of quantum interference effects,
only two of the four possibilities at the PBS lead to coincidence counts (double
transmission and double reflection).

From (3.31), we see that the pump bandwidth s plays a significant role in the
shape of the coincidence dip. The crystal length L also affects this shape, since it
determinesthevaluesof 7 ,t,, and t_. Toillustrate the effects of varying these two
parameters, R,,(5t) isplotted for several different values of the dimensionless
productot. in Figure 3.5. For the cw case, the coincidence probability fallsall the way
to zero in the familiar triangle shape reported for earlier type-1l HOMI experiments
[10]. Asot. increases, more and more of the asymmetric character of F (w,,0,) is
“reveadled” by multiplication with larger pump bandwidths, and the minimum valueis

increased from zero.

3.3 Experimental procedure and results
3.3.1 Apparatus

The experiment is depicted in Figure 3.6. The output of amodelocked
Ti:sapphire laser was frequency-doubled by focusing onto a.7 mm BBO crystal, cut
and aligned for type-1 phase-matching. In the type-1 upconversion process, two
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Figure 3.5 Predicted coincidence counting rate for several different values of the pump
bandwidth / temporal walkoff productot. . The two-photon interference dip is degraded
as this product increases. Plots are shown for R, =1 (Adapted from [16]).
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Figure 3.6 Experimental realization of the ultrafast pulse-pumped type-I1 collinear
Hong-Ou-Mandel interferometer. The second-harmonic was separated from the
fundamental beam by a sequence of prisms before impinging onto the .8 mm long BBO
downconverter. Another prism sequence separated the downconversion from the
residua pump. The quartz platesimposed a variable delay dt between the signal and
idler photons. Their polarizations were rotated through 45° by a suitably oriented half-
wave plate before they encountered the polarizing beamsplitter (PBS). Avalanche
photodiodes D, and D, monitored the horizontally and vertically polarized output ports
of the PBS, and the electronic pulses from these detectors are fed to a coincidence
counter with a9 ns coincidence window.
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verticaly-polarized o-wave photons at the fundamental frequency are annihilated to
create one horizontally-polarized e-wave photon at twice this frequency. The Ti:sapphire
radiation had a mean wavelength of 810 nm, with a bandwidth of 10 nm, and arepetition
rate of 80 MHz. The frequency-doubled pulses had a mean wavelength of 405 nm, and
measured bandwidth of DA, =3 nm, corresponding to afrequency amplitude
bandwidth of 6 = 34.5ps *. The FWHM duration of atransform-limited gaussian
pulse with these characteristics is 97 fs. To test the dip visibility asafunction ofot_ , an
optiona bandpass filter (F1) was placed in the pump beam to restrict this bandwidth to
DA, =.8nm, or 6 =9.2ps™.

The upconverted pump pulses were collimated by a second lens and separated
from the fundamental Ti:sapphire beam with a sequence of four prisms, each of which
was cut so that light incident at Brewster’ s angle also experienced minimum deviation at
the output. The first prism introduced a frequency-dependent angular spread, so that the
810 nm beam could be blocked while the 405 nm beam continued on. The second prism
halted the angular spread, so that the 810 nm beam emerged with al of its frequency
components traveling parallel to each other, but separated in space. This*“spatial chirp”
was undone by the last two prisms, which resulted in a collimated pump beam with no
transverse separation of the frequency components.

The pump beam was then directed onto the downconversion medium, aBBO
crystal 1 mm in length, cut and aligned for type-1 phase-matching with its extraordinary
axis paralld to the horizontal pump polarization. The collinear downconversion was
selected with apertures and separated from the residual pump radiation with another
dispersion-compensated series of prisms.

The delay linefor the collinear Hong-Ou-Mandel interferometer consisted of a

series of antireflection-coated quartz plates, oriented so that their fast and Sow axes
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were aigned with the signal and idler polarizations. By inserting different numbers of
plates with different orientations, we were able to vary the delay between the signal and
idler wavepackets (5t ) in discrete steps. The platesimposed arelative delay of 32 fs per
mm of quartz inserted.

The downconverted photons then passed through a zero-order half-wave plate
(I /2) oriented with its optical axis at an angle of 22.5° to the o polarization. This had the
effect of rotating the o and e polarizations of the signal and idler by 45°. Asaresult,
both photons had a 50% chance to be reflected or transmitted by the subsequent
polarizing beamsplitter (PBS). The output ports of the PBS were monitored by two
EG& G SPCM 200-PQ avalanche photodiodes (D, and D). The light was focused
onto the small active areas of these detectors with the help of long focal-length
(» 10 cm) lenses. Broadband interference filters DA 3 20 nm were placed in front of
each detector to reduce spurious background counts. An optiona filter (F2) could be
placed in the path of the downconversion to reduce the bandwidth of the downconverted
light to 10 nm; this was done in the hopes of improving the visibility with the
“quantum-eraser” type scheme discussed in Section 4.2.3.2.

The pulses from the detectors were fed into discriminators which emitted 4.5 ns-
long NIM pulses that were triggered on the leading edge of each input pulse. These
pulses were then fed to a coincidence “AND” gate, which sent out a NIM pulse
whenever both of itsinputsregistered a“logical 1.” The 4.5 nsduration of the input
pulsesimplied that the AND gate would put out asignal whenever both pulses arrived
within 9 ns of each other, a coincidence time much longer than the coherence time of the
downconverted light (lessthan 100 fs), which justifies the steps taken before Eq. (3.21)
above. Coincidence counts were recorded by computer for various lengths of quartz

inserted into the beam. The maximum length of quartz available was 12 mm,
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corresponding to arelative delay of dt =.384 ps. Thiswas more than enough to cover

the dip width of t. =.152 ps expected for our BBO crystal.

3.3.2 Results
3.3.2.1 Data taken with the broadband pump

The coincidence counts registered as afunction of ot are shownin Figure 3.7
(a), dlong with the theoretical curve corresponding toc = 34.5 ps™, t, = .061 ps, and
T, =.213 ps (corresponding to the range of pump wavelengths DA, =3 nm and BBO
crystal length L =.8 mm), sothat ot. =5.25. Thetheoretica curve has been
normalized to match the nominal counting rates for the data outside the dip. As
predicted, the two-photon interference vigibility is not very good, with the minimum
counting rate equal to about half the rate outside the dip. The dip is not centered at
0t =0 because it requires about 2.5 mm of quartz to correct for the temporal walk-off
separation between the signal and idler after traveling half the length of the BBO crystd,
T [/2=.076 ps.

3.3.2.2 Data taken with a narrowband pump

In keeping with our earlier discussions of the role of pump bandwidth, Figure
3.5indicatesthat if the productot. isreduced, the visibility of the dip isimproved asa
consequence of the smaller range of frequencies contributing to the integral in (3.22).
To check this, weinserted the filter F1 into the pump. The .8 nm range of wavelengths
transmitted by F1 corresponds to a pump bandwidth of ¢ =9.2 ps™, so that the
bandwidth / temporal walk-off product isot. =1.40. The data are presented in Figure
3.7 (b), together with the theoretical counting rate for these parameters. The predicted
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Figure 3.7 Experimental data and joint emission amplitude spectrum seen by the
detectors for pump bandwidths of 3 nm (a) 0.8 nm (b), and 3 nm with 10 nm bandpass
filtersin front of the detectors (c). Data reproduced from [12], spectrafrom [16].
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improvement in the fourth-order visibility is borne out by the data, although in both

cases the measured minimum counting rates are higher than expected from the theory.

3.3.2.3 Datataken with the broadband pump and detector filters

Finally, we recorded coincidence counts with the broad pump bandwidth
restored, but with the spectral filter F2 inserted to restrict the range of signal and idler
wavelengths that reached the detector. These counts are shown in Figure 3.7 (c). The
photon pairs that emerged from thisfilter were much less spectrally distinguishable
from each other in principle (see Section 4.2.3.2), and the result was a much improved

interference dip, although the counting rates were significantly reduced.

3.4 Discussion

3.4.1 Comparison of spectral filtering in pulsed vs. cw experiments

The use of spectra filtersis not uncommon in this type of experiment, in which
acoincidence rate is measured for different values of the relative delay between the
signa and idler [1,10]. However, the earlier experiments differed from the present one
by their use of cw pumping; in that case, the filters are not needed for high vigibility in
principle (see Section 4.1.2.), either in the type-1 or type-I1 case. For those experiments,
thefilters were helpful in apractical sense, in that they increased the coherence times of
the photons, which relaxed the stability requirements, but the minimum coincidence rate
is predicted to reach zero for those cases even without spectral filtering. Asseenin
Figure 3.3, thisis a consequence of the fact that the cw-pump “window” does not
reveal the asymmetric character (if any) of the phase-matching function, so that the

spectral two-photon emission amplitudes S,((;)Signaj ,coid,e,) are always symmetric under
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exchange of their arguments; this renders the photon pairs spectrally indistinguishable
even without filters.

In contrast, the downconversion filter was required for good visibility in our
experiment with the broadband pump source. In this case, the spectral filtering
constituted a kind of “quantum erasing” of the distinguishing spectral information
after it had been created, in that the most distinguishable pairs were discarded before
they reached the detectors. The part of the two-photon spectrum which survivesthis
filtering is the part that appears the most symmetric under exchange of o, andw,, as

shown in Figure 3.7 ().

3.4.2 Interpretation of theresults

From the evidence presented above it is clear that one must proceed with caution
when performing quantum interference experiments with ultrafast-pumped type-l|
downconversion. Asin any fourth-order interference experiment, the visibility is directly
dependent on the indistinguishability in principle of the interfering two-photon detection
processes. For the HOMI, this indistinguishability is expressed by the symmetry of the
two-photon emission amplitude, S(mo,(oe) , under exchange of its arguments. The
consequence of pumping abirefringent type-I1 medium with a broadband pump pulseis
to create an emission source which does not obey this symmetry very well. The effects
of thisasymmetry on the interference “dip” visibility are evident in our data.

We a so showed that the interference may be restored by spectrally filtering the
pump pulses, which is tantamount to moving towards cw-pumping: the smaller the
bandwidth allowed for the pump, the better will be the dip visibility. But the
consequence of thisis that the pump pulses are extended in time, so that the benefits of

synchronization for multiple sources may be lost.
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Finaly, we showed that interference visibility may be recovered if the
downconverted light isfiltered before it reaches the detectors. Here again, the narrower
the passhand of the spectra filters, the longer the temporal extent of the signal and idler
wavepackets. While this might be helpful when one wishes to synchronize the emission
from multiple sources, the coincidence count rates are then considerably reduced.

In the next chapter we will take up another solution to the problem of reduced
visibility in the type-1l HOMI, in which the emission spectrum is symmetrized at the
source. This method allows us to recover the dip interference visibility without |oss of

timing resolution or reduced counting rates.
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Chapter 4

Engineering spectral indistinguishability

4.1 Introduction

In the previous chapter, we saw that the visibility of two-photon interferencein a
Hong-Ou-Mandel interferometer was reduced when the interferometer was based on
type Il downconversion pumped by atrain of ultrafast pulses. Thisreduction in
visibility was attributed to the presence of spectral information in the two-photon
wavepackets, which served as a“which-path” identifier for the double-detection
process. The two double-paths which could lead to a coincidence count (double
reflection or double transmission) were rendered amost compl etely distinguishable, and
hence, incapable of effectively interfering with each other. In those cases, what alowed
usto identify “which path” was actually the asymmetric character of the joint emission
amplitude spectrum for the downconversion, S, ©, ). We saw that if this function was
made more symmetric, by narrowing the pump bandwidth or by restricting the
photodetectors to look only at the most symmetric region of the spectrum, the
interference “dip” visibility could be restored.

However, because both of these methods use narrow bandwidth filters, which
have the effect of lengthening the pulses, they eliminate most of the precise timing
information that is the main reason for using ultrafast pulsesin the first place.
Additionally, the counting rates suffer substantial 1osses after the light has been
attenuated by thesefilters. This makes filtering an even more unattractive solution to the

problem.
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The new approach, then, isthis: rather than throw away the parts of the emission
which are not symmetric, we could attempt to symmetrize the entire joint emission
amplitude spectrum for all the pairs at the source. The asymmetry arises from the
different dispersion characteristics for the e-ray and the o-ray within the
downconversion medium: these are crystal properties which we are not at liberty to ater.
But we can make use of the fact that for any function of two variables g(x, y), itis

always possible to construct the function
g€xy)=9(xy) +g(y, %), (4.2)

which is symmetric under exchange of the arguments x and y by definition, regardiess
of the symmetry properties of g(x, y) . Symmetrizing the joint amplitude emission
spectrum in this manner implies adding a second downconversion process to the first
one, with the signal and idler polarizations exchanged, so that the total amplitude for
emission from the system is governed by the new, symmetric joint amplitude emission

spectrum
840)5,(1}) = qws’a)i) + qwi ’(‘os) : (42)

Note that if we want the emission amplitudesto add like this, we must add the second
process to the first in such away that it is ultimately impossible to distinguish which of
the two downconversion processes generates each photon pair (see Figure 4.1). This
coherent addition was carried out in the laboratory, and new interference data were
collected for the downconverted pairs having the new emission spectrum. The result was
that the interference “dip” visibility for these new photon pairs was significantly

improved, without any reduction in counting rates or bandwidth.
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Figure 4.1 Conceptual arrangement for the addition of two fields produced by
downconversion processes, in which the resulting photon pairs could have come from
either process with equal probability. The addition is coherent if the “which-process’
origin of the pairs cannot be determined even in principle; in this case, the photon pairs
carry ajoint emission amplitude spectrum that is the superposition of the spectrafor
each process (a). A scheme for producing this addition is shownin (b). A pump pulse
passes through the parametric downconverter (PDC) and is separated from the
downconverted light by means of a dichroic mirror MD2. The pump pulseis reflected
back into the PDC by mirror M1. The signal and idler beams are also reflected back via
M2, with their polarizations exchanged by the A/4 plate. The photon pairs which
ultimately emerge from the downconverter could have been generated on either the first
or second pass of the pump through the crystal. The downconversion from this
modified source is separated from the outgoing pump beam by MD1 and sent through
acollinear Hong-Ou-Mandel interferometer to apair of photodetectors, which produce
coincidence counts.
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4.2 Schematic and theory

4.2.1 Schematic of the experiment

The coherent addition depicted in Figure 4.1 (&) can be accomplished
experimentally by using the scheme shown in Figure 4.1 (b). The pump pulse enters the
parametric downconverter (PDC) from the right, possibly creating an orthogonally
polarized, frequency degenerate pair of photons somewhere inside. After exiting the
PDC, the pump isreflected by adichroic mirror (MDZ2), while the lower-wavelength
downconverted light is transmitted through it. The pump isnormally incident on a
mirror (M1) that reflectsit back into the PDC. The signal and idler, meanwhile, are sent
through al /4 plate and then onto amirror (M2) at normal incidence. They are then
reflected back through the| /4 plate and into the PDC, overlapping with the pump pulse
in the center of the crystal.

Thel /4 plate is oriented with its optical axis at 45 degreestothe“o” and “¢’
axes of the PDC. After their first pass through this plate, the polarizations of the signal
and idler photons are converted from linear o and eto circular LHC and RHC Hates,
respectively. After reflection from M2, these circular signal and idler polarizations are
then converted to e and o linear polarizations, respectively, by passing the light through
thel /4 plate a second time. The net result isa 90 degree rotation of both the signal and
idler polarizations, effectively exchanging their roles as the e and o polarized photons.
Asaresult, the e-polarized light that is sent back into the downconverter actually carries
the spectrum belonging to the original o polarization, and vice versa; more generdly, the
joint emission amplitude spectrum for these pairsis switched from S(w,,®, ) to
S(w,,m, ). Interestingly, this switch also has the effect of canceling the temporal walk-
off for photon pairs emitted near the center of the crystal: the photon with the fast o

polarization on the way out will have the Slow e polarization on the way back in.
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This system functions as a Michelson interferometer, with the dichroic mirror
MD2 playing the role of the central beamsplitter, separating and recombining the “red
arm” and “bluearm.” Here, though, the interfering pathways begin and end at the
center of the PDC, not at the beamsplitter. With the arms properly aligned, and with
their optical path lengths balanced to within the coherence time of the pump, it becomes
impossible in principle to discern whether the downconverted light that ultimately
emerges from the PDC is generated from the first or the second pass of the pump pulse
through the crystal. The resulting o and e-polarized photon pairs therefore carry a

superposition of the joint emission amplitude spectra for each process, given by
Sto,.0,)=Yo,.0,)+e’Jo,.0,), (4.3)

where S(o,,0,) refersto the fields generated on the first pass, S(o,,®, ) to those

generated on the second, and
0 = ks((‘os)fsignal + ki (O‘)i )gidler - kp ((D p)g pump (44)

isthe total phase difference between the pairs generated on the first or second pass.

This phase difference can be varied by changing /¢ the length of the blue arm. For

pump
suitable values of 6 (0,+2r,...) the joint emission amplitude spectrum can be made
symmetric in accordance with (4.2).

After emerging from the PDC, the downconverted photons are separated from
the pump with another dichroic mirror and sent into the common-path Hong-Ou-
Mandel interferometer. This consists of a controllable birefringent delay line (61), al /2
plate, a polarizing beamsplitter (PBS), and a pair of photodetectors (D,, D). The x-
polarized photon is delayed by an amount ot relative to the y-polarized photon before
entering the PBS. Thel /2 plate rotates both the x and y polarizations by 45 degrees:

each photon may then be either reflected or transmitted at the PBS, with equal
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probability. A coincidence count at the detectors could have come from transmission of
the x and reflection of they, or reflection of the x and transmission of the y-polarized
photons. Asin the previous chapter, these two coincidence processes can interfere with

each other, producing a“dip” in the coincidence counting rate as 6t ® 0.

4.2.2 Quantum state of the light

The quantum state describing the photon pairs created by a single pump pulse
can be obtained in the same fashion asin the previous chapter, but using atwo-stage
evolution in the interaction picture to describe the first and second downconversion

processes’. The state of the downconverted light emerging from the PDC is then

v} =|vac) +ndw g q o (@, + o )F (@, ,me)[| @) Joocy, - e‘e|(oo)y|o)e)x]

0o e (4.5)
=|vac) +n|y ™),

where we now use the labels x and y to denote the two orthogonally polarized output

modes, but retain the e and o labels for the frequencies. 6 is as defined in (4.4); for the

moment, we will treat 6 as being frequency-independent over the bandwidth of the

signal, idler, and pump photons. As dways, the dimensionless creation efficiency

parameter 1 is defined by

n o gvofxgygz

" (4.6)

where 7, ,(,,(, arethe dimensions of the interaction region, [\/0|2 isthe peak intensity of
the pump pulse, and g is a coupling constant between the pump and downconversion
modes. Once again, we are restricting our calculations to the “nondepl eted pump”

regime, in which we assume

! Seereference [1]. For an explicit derivation of this state and its normaliation, see Appendix C.
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i {y @y @Y <<1. 4.7)

Asin the previous chapter, the spectrum of asingle pump pulse is assumed to have a

normalized gaussian form with bandwidth s, centered on the frequency 2,

=2
a8, t0e- 2(09

a@%+w9=g§;e ° 0, 4.8)

while the phase-matching function is given by

F (0,00) = sndifo,) +k ©0.)- k0, +0,)] 52 @9

4.2.3 Predicted counting rates

4.2.3.1 Single-channel counts

Our experiment measured both single-channel and coincidence counts as the
quartz delay ot and phase 6 were varied; we will begin here by calculating the single-
channel counting rate at detector D, as afunction of these two parameters. For asingle
pump pulse, the probability that detector D, registers a photon wihin atimeinterval dt

around thetimetis p,(t)dt, with the instantaneous probability density given by
~ ~ ~ oy 2
pA(t:3T,0) ={w [EC () EX (D) =|EC @)y - (4.10)

Here |E A|2 Isin photons per second, and we are assuming perfect detection efficiency
for D,.

Asin Chapter 4, we may rewrite the instantaneous field operator at the detector
as aFourier decomposition of the polarization components of the signal and idler

modes projected onto D, by thel /4 plate and PBS:

E0(6r) = [0 & A4 (0)e™ +3 (o). (4.11)
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Substituting (4.11) and the state (4.5) into (4.10) and carrying out the action of each

annihilation operator onto the state yields

p,(650,0) =IO N8 860, +0,)F (0,0,)
o, @ (4.12)
. . . 2
. {e i, (t- 81) |O) +e—|met|mo>x _ elee—lwe(t—ﬁr)lm \ e e i, tl(’)e/x}
for the instantaneous probability density. The total photodetection probability
accumulated over al timesis
¥
P.(67.,0) = ¢yitpa(t;87.,0). (4.13)
-¥

Substituting (4.12) into (4.13) and carrying out the required Hermitian conjugation and

integration gives the result
P.0)=I"2{B- Kcog#)} (4.14)

where, inthelimit do ® O,

Bo fx‘;ﬂm dw |0c 0, +® )| |F o, e)|2 = 4(;/127 (4.15)
and
¥ ¥ )
Ko (‘x‘ﬂwodwebc((oo +0, )| F " (@ ,0, )F (0,,0,)
N (4.16)
ZB Jor U f&b(t +‘C)0
= e—u
&1, +1 & 42 o
isthe degree of spectral overlap for the photons created in the two downconversion
Rk, 0
processes. Once again, t, = Lga - g—k" + isthe maximum difference between the
(V) P Olp @

group delays experienced by the pump pulse and the o-wave (after traveling the entire
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length of the PDC), 1, isthe analogous quantity for theewave,andt ° 1, - t, isthe
maximum group delay between o-wave and the ewave.

Note that if F (w,,, ) were completely symmetric, then K would equal B by
definition, and the visibility of the single-channel interference governed by (4.14) would
be 100%. Once again, we see acasein which interference visibility isreduced as a
consequence of the asymmetry of F (m,,m, ). Thiswill be discussed in more detail in
section 5.4.3, after the experimental results are presented.

From (4.14) we can see that the measured rate of single-channel counts at our

imperfect detector D, in the laboratory will be
R(0) = a,,B,RN["2{B - Kcog6)} (4.17)

where o, isthe quantum efficiency of D,,3,, isthefraction of emitted photons which
is transmitted through the opticsto D, and R, is the repetition rate of the pump pulses.

The above expression can be rewritten as

il

R,(6) = Ruo}5 - 53005(9)%
" (4.18)
11 é yox u 8@5(1: +1,)0 u
— - f N
RAO'I 2 ec( )H 5 COde)?)/
where
Ry =40.,8,R B (4.19)

is twice the mean counting ratg.at D
The single-channel counting rate at D is computed in exactly the same fashion,

starting with afield operator representing the horizontally polarized output of the PBS:

EV(t;61) \/67 a- Jﬁ é )€ - ay(m)]e'i“ (4.20)
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Theresultis
11 K 1]
0)= — - —cos(0
Re) = Ryl - S5 cos(O)y
%‘:1 é J2n gerfa%(TO+Te)bcoie)u (4.21)
= —— u -
002 go(toﬂe)a & &2 5 ﬁ)/
where
Reo = 408 R "B (4.22)

is twice the mean counting rate at Dy.

4.2.3.2 Coincidence counts

Finally, we will calculate the rate of coincidence counts. For asingle pump
pulse, the probability that D, registers a photon within atimeinterval dt, centered at
timet, and that D, registers a photon within dt,, centered at t, is p g(t,,tg)dt,dt, . The

instantaneous probability density p,; isgiven by the normally ordered expectation

vdue

pAB(tA’tB;&'e): Wl: EX)(t )ég)(tA)Eé-)(tB)ég)(tB) :l‘lf)

(4.23)
= B0 (B (v

Substituting (4.11) and (4.20) into this, and carrying out the annihilation operations
onto the state in (4.5) gives

i)’
(4n)

'{(e [0 e-5t) +0da] e-i[wo(tA-Sr)mets]) (4.24)

+ée(e-i[me(u-&)+wots] _ g [oetts-bt)roq tA])}|vaC)|2

a aoc(m +0, )F (@,,0,)

®, 0

pAB(tA’tB’& 9)
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Asin the previous chapter, we obtain the total probability for a coincidence count by

integrating p s over al possible photon arrival times within the coincidence resolving

time, and extending the limits of these integrationsto ¥ :

¥ ¥

PAB (&: ,9) = C‘)C‘ﬁtAdtB pAB(tA’tB;ST ’9)

-¥-¥

(4.25)

After performing these integrations and taking the limit 6w ® 0, we arrive at the result

P (6t.0) =mI*{B- Kcog6) + C8t)cos®)- D(5t)}
where Bisgiven by (4.15), K by (4.16),

¥ ¥
C(ST) = (‘I\)j(l)od(l)eb( (('00 +(De)|2|l: ((Do ’(")e)lze- (00 @ 3¢
00

(1o o) 0
:ZBQ- 5_T|_ oa rect? L T_g
T. 9 2 '20

and

¥y
D(ST) = (‘I\ﬂmodwela((‘oo + ('Oe)le’k ((De,O)o)F ((DO,(De)e_i(m e Oo)F
00

:ZBG(TO+Te)erf% >3 ——__

J2n %(‘C +‘C) ot Oorect§ L,T’_
2 2

Q10

(4.26)

(4.27)

(4.28)

Using the relations above and multiplying by the appropriate detector and collection

efficiencies along with the pulse repetition rate gives
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+cos(9)g2- _—— 1;7,%% (4.29)
e T 5y
where
Reeo =200,0 e BRIl B (4.30)

is the mean coincidence counting rate for [5t| >t_ /2 (outside the shallow “trough”
structure). A plot of R,;(5t,0) isshownin Figure4.2 (a) , with R,,, =1. For the
fixedvalue® =m , we expect to see the modified “dip” structure shown in Figure 4.2
(b) (solid line); theoretically, the coincidence rate can fall to zero as ot ® 0, indicating
full recovery of the quantum interference of the photon pairs. For the fixed value6 =0,
we expect to observe a*“peak” structure as 6t ® 0 (Figure 4.2 (b), dashed line). As 6
isvaried while ot is kept fixed, sinusoidal interference fringes between the “ peak” and
“dip” values are expected. For &t = 0, these fringes should have 100% visibility, and
should be 180 degrees out of phase with the single-channel fringes predicted by (4.14).
These out of phase “peak” to “dip” fringes are generated by the third term in (4.29),
given by (4.27). As dt is shifted away from zero, the magnitude of thisterm rapidly
diminishes dueto its narrow gaussian character, and the visibility of thefringesis
reduced; they remain out of phase with the single-channel fringes until the crossing

point where dt satisfies

W AN 3

& Pr|0 & Jon & (1, +1,)0
- —_—— = f - 431

2 T o c(roﬂe)eré a2 5 3D




100

@
1
0.8} {Al
I
RA 0.6} I
B \—
0.4 e B e
(b)
0.2}
-0.5 o) 0.5 1 &t(ps)
(©)

=\

SO

Figure 4.2 (a) The coincidence counting rate R,;(67,6) shows sinusoidal modulation as
fisvaried, with avisibility that depends on the value of ot. For fixed values of 6, the
variation with 67isamodified version of the familiar type I| Hong-Ou-Mandel “dip”
structure. In particular, the value 6 = z leads to coincidence counts that dip all the way
to zero (b, solid line).Figure (c) is a close-up of the dip region. Plots were made for

Rugo = 1 Using the parameters of the actual experiment: o = 34.5ps™, 7, = .38ps,

andt, =1.33ps
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At this point, the third term in (4.29) has diminished to the same magnitude as the
second term, which has a small value independent of 3t and givesrise to fringes which
are in phase with the single-channel counts. At the crossing point, these two terms
cancel each other and there is no net fringe visibility whatsoever. For even larger 6t
values, the second term dominates to produce low-visibility fringesin phase with the
single-channel counts; for6 =m this region corresponds to the familiar “trough” in the

fourth-order interference, presented in the last chapter.

4.2.4 Dispersion in the Michelson interferometer

4.2.4.1 Eliminating dispersion
Underlying al of the calculations above is the assumption that 6, the relative
phase between process 1 and process 2, is a frequency-independent quantity. This
approximation allowed the factor € to be treated as a constant multiplier for the
integralsin (4.16) and (4.27), which smplifies the calcul ations. However, this
assumption is not strictly correct, as we can see by expanding (4.4) in aTaylor series
about the mean signdl, idler, and pump frequencies:
0 (,,0;) =k (0.t + k(o) - k (o, +0,),
= [k(@)r,+k @), - k(2@)0 ]

H(0,- D), + (o, - D)ke, - (0, +0, - 2k, ] (4.32)
él —\2 1 _ 1 —\2 u
+é§(cos- @) kot +§((oi - ) ke - E(wsﬂoi - ) k¥, 5
ok, ok o7k, 9’k _
h 0 = o —Bf Kk ' k 2l . Thef k
where k& "o a,kp¢ 20l W o m,and ge So? _ e first bracketed

term depends only on the mean frequency of the downconversion, and not on the
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particular signal and idler frequencies which are ultimately detected. The second and
third terms, however, exhibit linear and quadratic frequency dependence. Labeling these

termsas8'?, 0 and 8?, respectively, we may write
0(®.m,) =6 +6% 0,0 )+6(n,,0). (4.33)

To determine whether the frequency-independent phase approximation @ @"° isvalid,
we must investigate the rel ative magnitudes of these terms.

Starting from the center of the crystal, the light accumulates the total phase
difference asthe signd, idler, and pump beams traverse their respective paths in the two
arms of the interferometer, including propagation through dispersive media (see Figure
4.3). Dueto the polarization rotation induced by thel /4 plate, the signal and idler
beams each spend half their time in the interferometer with o polarization, and half their
time with e polarization. The zero-order phase difference for the beams returning to the

center of the crystal istherefore

00 =k, (@), +k @)L, - k,(2B)¢, +

olel

(L +L.- 2L,) (4.34)

Thefirst three termsin (4.34) represent the accumulated phase difference within the
various dispersive elements: the BBO downconversion crystal, the fused silicadichroic
mirror, and the BK-7 glass dide.”? The free-space propagation lengths for the o and e
downconversion beams are labeled L, and L ,, and areidentical and fixed; the free-space
length for the pump L, depends on the position of the pump mirror M1. We see that if
L, ischanged by alength AL, the resulting change in 0O will be

D" = DLZ—:T’ =2n % . (4.35)

p

2The| /4 plate, consisting of athin piece of quartz (<1mm), is expected to contribute a negligible
amount of dispersion and is omitted from these calculations.
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Figure 4.3 Thesignal and idler photon pairs accumulate a frequency-dependent phase-
shift relative to the pump pulse as each color travels differently through dispersive
elementsin the Michelson interferometer.
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We therefore expect the interference fringes in the coincidence and single-channel
counting rates to be governed by the mean pump wavelength A p = 405 nm.
Thefirst-order phase differenceis
09 (0,0,) =(0, - @)k, +(o,- ®)kg, - (0, +o, - 20 )k,

L L L (4.36)
) c +(O)e_ 0)) C - ((Do+0)e_ 20)) C

el

(o]

+(o, -

where k¢, , now refer to the inverse group velocitieswithin all the various dispersive

mediain the interferometer. This can be written more simply as
00 (0,.0.) =(0, + 0, - 25) 5 (ki + ket - 2k, ) += (L, +L,- 2L, )"
orVe o e §2 o e P p 2c e r/d

= (o, +0, - 20)0¢

(4.37)

where 6 (is not a phase, but is a frequency-independent coefficient which depends on
the dispersive elements and path lengths in the interferometer. For an appropriate choice
of L, 6 dcan become zero, eliminating all of the first-order frequency dependencein 6.
Thisis equivaent to balancing the path lengthsin the interferometer to within the
coherence length of the pump. Averaged over the range of pump frequencies o, + ®,,

the changein 6 @ dueto achangein L, by alength AL is

(o +o_- 20 B
/ v O\ _ Vo e /o, +0, _
D9 = DL =21 (4.39)
\ /o, +0 I ’
00 2c p

where Lp =2n g » 50 um isthe coherence length of the pump pulse.

After similar simplifications, the second-order phase difference may be written

@ ~((0,- &) +(o, - B) )5 U o LU
e (O)O’O)e) ((0‘)0 0‘)) +((De 0‘)) )64(kcggg+ke@)g (0‘)0+0)e 2(‘0) g 2 H(439)

)2)9(;@' (0)0 +('0e - 2(73)29;9

I
£}
el
+
2
el
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. 97Ky e
with kétg;o W

2
and ke g k; representing the group velocity dispersions for
1] ® 2®

each of the various media; the products k ¢¢ are understood to be summed over the path

lengths traveled within these media. Again, the parametersd ¢ and 6 ¢ are not phases, but
are coefficientswhich reflect the total group velocity dispersion for the downconversion
and pump pulses, respectively. Unfortunately, no values of 6 ¢ and 6 ¢ can be chosen
that will entirely eliminate 6 @ for all frequencies; however, we can choose values that
minimize (4.39) for the most likely downconversion frequenciesin our experiment [1].
To do this, we note that the most likely pairs of frequencies are those which maximize

F(o,,m,), by zeroing the argument of the sinc function in Eq. (4.9):

(ke- ke w, - @)+ (ke- ko, - @) =0 (4.40)

This expression can be used to eliminatew,, or ®, in (4.39): it isthen possible to
choose 6 ¢ and 6 ¢ such that the remaining frequency dependence is zero. For our
interferometer?, this calculation revealed thatd ‘? could be minimized by placing 2.04
mm of BK-7 glassinto the pump arm. The plate C had an actual thickness of 1.58 mm,

which left some residua quadratic dispersion uncompensated in the experiment.

4.2.4.2 The consequences of dispersion

In practice, it is possible that somefirst order dispersion remains uncanceled if
the interferometer is not exactly balanced. In addition, as noted above, the quadratic
dispersion was not entirely canceled with the compensator plate C. To see the effects of

any residud first and second order dispersion, we need only replace our original

35 mm BBO crystal, .25” fused silica dichroic (oriented at 45° for an effective length 7.27 mm)



parameter 6 by its expansion (4.33) in the quantum state (4.5), and recompute the

guantities of interest. The new single pulse coincidence probability is given by
Pao(57.61%,0 ¢80 = |n|2{ B- [K,(6 60g90 g:*cos(e 9 +arg(K,(0 ¢e$¢eg)1))
+|C, (37 6 ¢ogem g*cog(e © +arg(C, (57,0 60498 g)))

- D(8t )}
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(4.42)

where B and D remain as defined in (4.15) and (4.28). The new dispersion-dependent

guantitiesare

¥y
KD (9(590@,9”: ?wodwela(wo + weXZF ' (me’ (Do)F (0)0 ’(De)

, ei{(m0 +0,-20)0 04(05-8 ) Ho,- B)*)og- (0 +0 -23) 0 g
and

Yy
CD(ST 9 Q}G[Q; 99)1:: O(‘Io\jjwodmela (0)0 +0)e]2||: ((Do,(,l)e)lzé i(00-we )&

, ei{(wome- 25)0 (053 ) +(0,- 3)°)og- (0, 40, 28) 0 g}

After some manipulation, the first of these quantities may be rewritten as

é o
KD(ea;eo@,eg):zngh:-ﬂJ:;l/46'@ g +17+1;+1;)

where
o a )
12,0 5 dze'i%gL erfgl(ro;rre)(l- 7)£20¢>
g 62 +2 (o0 o0

01

The remaining quantity can be expressed as

(4.42)

(4.43)

(4.44)

(4.45)
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) ‘ 1 ,
C,(57.6 G0 & 6¢k= 2B§2 T H ofe s o8] , (4.46)
where
6" _gf_zz BTE'J §"?—
,=8 d1- [l 7% EUEE ”). (4.47)
(0]

-1

The resulting expression for the coincidence counting rate with dispersionis

(0 I - N I S
R.e(07,01.6 600 8= Ry SR =\ pryet {lg+17+15+1;}
’ cos(e(o) +arg(Ko(6 a;ec,@,eg)g)

e T. 1 ’I
& q\/eg{ (08043 4|] ’
" oo +arg(C,(5t,0 6080

I (Bl ) o ctot gl
G(ro+re)erf% 2J2 &2 T_gﬂrect?r, 2 '2%

(4.48)

A comparison with (4.29) reveals many similarities for the cases with and without
dispersion: the first and last terms in the expression are unchanged, and, as before, the
second and third terms are the only ones which depend on 6. Recalling (4.35) and

(4.38), and assuming
L, >>2x, (4.49)

we can regard small changesin L, (on the order of &) asaffectingd ', but not 6¢.
Thefactors arg( KD(G ¢ogdmo gt» and arg(CD(Sr, 0G0 5g¢eg)§ then appear asfixed phase
offsets for the new interference fringes. The new expected coincidence rate is plotted in

Figure 4.4, asdt and 0'” are varied. Theintegrals (4.45) and (4.47) were computed
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Figure 4.4 (a) With dispersionin 6 included, the coincidence rateR,; (57,6 6.0 ¢
still displays sinusoidal variation with the zero order, frequency-independent phased ©
Fore'® =1 (b, solid line) the dip iswider than before, and does not fall to zero. Plots
were made using our best estimates for the parameters of the actual experiment:

¢ =34.5ps 1, =.38ps,T, =1.33ps,0¢=004¢=2.95" 10 *ps® 0 ¢¢= 7.42" 10 *ps’
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numerically, with the assumption that the interferometer was perfectly balanced so that
0¢=0, with valuesfor 6 ¢ and 6 ¢ representing the dispersion of the actual optical
elementsin the experiment.

It isinteresting to note what happensto this structure if the path lengthsin the
interferometer are out of balance by an amount comparabl e to the coherence length of
the pump. In this Situation, the first-order dispersion coefficient 6 ¢ is no longer zero. In
fact, the alignment procedure in the actual experiment may have alowed the pump
mirror M1 to be offset from the optimal path length balancing condition by as much as
10 mm. The effect of such an error is shown in Figure 4.5: the net result isatrandation
of the central dip and peak structures away from 6t = 0, and adight reduction in the
dip visihility.

The shift in the dip indicates that in the collinear HOMI, some extradispersive
material is needed to make the two coincidence processes indistinguishable -- i.e., to
make the signal and idler photons overlap perfectly beforethel /4 plate and PBS'. This
occurs because the total blue and red path lengths in the Michelson interferometer are
no longer balanced for pulses emitted from and returning to the center of the PDC;
instead, they are balanced for pulses emitted and returning to some other point within
the crystal. Thisimplies adifferent amount of temporal walk-off, which is corrected by
the additional dispersive material in the HOMI. For these photons, the new dip position

is actually the one for which the net delay between signal and idler is zero.

*In this experiment, the overlap of the signal and idler wavepackets at the beamsplitter implies the
indistinguishability of the resulting coincidence processes. Thisis not always the case, however. For
elucidation of this point, see reference[2]
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4.3 Experimental procedure and results

4.3.1 Apparatus

The experimental apparatus is depicted in Figure 4.6; it makes use of many of
the same optical elements as the experiments of the preceding chapter. Once again, an
ultrafast pump source for the spontaneous downconversion process was created by
frequency doubling the 810 nm output of a mode-locked Ti:sapphire oscillator with a.7
mm BBO crystal cut and aigned for type-1 phase matching. And, as before, the
resulting 405 nm pul ses were separated from the residual, undoubled 810 nm pulses by
means of a dispersion compensated prism sequence, before impinging onto the
downconversion crystal (PDC). This method delivered an average pump power of 330
mW, with a pulse repetition rate of 80 MHz. The measured bandwidth of the pump was
DA, » 3nm, implyingc = 34.5ps* and a coherence length LID » 50mm, satisfying our
earlier assumption (4.49).

For this experiment, the downconversion crystal was a5 mm piece of BBO, cut
and aligned for type-Il phase matching. This represents asixfold increase in the crystal
length from the one used in the preceding experiment, and from Figure 4.5 we can see
that thiswould ordinarily result in a poorer visibility for two-photon interferencein the
HOMI. We chose this “shallower” trough to make the improvement in visibility for
the new symmetrized source more dramatic, as seen in Figure 4.2, so that it could be
easily spotted in the |aboratory data.

The pump pulses were guided onto the PDC by means of adichroic mirror
(MD1) that isreflective at 405 nm, but transmissive at 810 nm. After passing through
the crysta, the pump pulses were separated from the downconverted fields by reflection
at asecond dichroic mirror (MD2), and sent to another mirror (M 1) mounted on a

piezoel ectric transducer (PZT) and a motorized trandation stage. M1 was aligned for
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Figure 4.6 Schematic of the new collinear Hong-Ou-Mandel interferometer. This
arrangement is amost identical to the one shown in the previous chapter, but contains
two important modifications. the downconversion crystal is 6 timeslonger, and a two-
color Michelson interferometer has been added to the downconversion region to
symmetrize the joint emission spectrum of the signal and idler pairs.
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normal incidence, to reflect the pump pulses back to MD2, and back into the
downconversion crystal for a second pass. Meanwhile, the first downconversion beams
passed through MD1, then through a quarter-wave plate (I /4), and impinged onto
another mirror (M2) aligned for normal incidence. They were reflected back along their
paths through| /4, MD2, and into the crystal. We attempted to balance the losses and
dispersion for the red arm by placing a compensator (C) in the pump arm. Thiswas a
BK-7 glass dide with a neutral-density gradient along its length. The dide was mounted
on atrandation stage, so that more or less transmissive parts of the dide could be
inserted into the pump beam until the intensities coming from the two arms were
equalized. As dready mentioned, the 1.58 mm thickness also served to cancel most of
the second-order dispersion experienced by the signal and idler photons.

The phase difference 6 was varied by changing L, with the PZT. A locking
system® ensured the stability of the Michelson interferometer by sending negative
feedback to the PZT, so that 6 could be held constant while the photons were counted.
The locking system was able to keep L, constant to within DL » 20nm ; from (4.35)
thisimplies astability in © of D6 » 21/20.

After its second pass through the PDC, the pump beam was again reflected at
the dichroic mirror MD1 and was sent back aong itsinput path, ultimately to be
absorbed by a broadband red-passfilter (F). Meanwhile, the signal and idler photons
passed through MD1 and into the quartz delay line. To vary 1 , we used a set of 6
crystal quartz plates, 4 of thickness Imm and 2 of thickness .5 mm. The plates remained
inthe beam at al times, and were oriented with their fast axes aligned either to thee or o
polarization of the BBO crystal. Different combinations of orientations for the plates

resulted in different net delays between the signal and idler photons. A fixed

® Thelocking circuit and feedback technique were adapted from a design by Mike Noel [3]. For a
schematic of the circuit and notes on its operation, see Appendix D.
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compensator plate was aso inserted to cancel the temporal walk-off in the BBO crystal,
S0 that pairs created in the center of the downconverter (in either process) would
experience only the net delay specified by dt. For a5 mm piece of BBO, the
appropriate compensator was a 16.2 mm quartz plate with its fast axis oriented to the e
axis of the BBO.

After the quartz delay line, the photons passed through a zero-order half wave
plate (I /2), a polarizing beamsplitter (PBS), and onto a pair of EG& G SPCM-200
avalanche photodiodes (D, and D). The TTL electronic pulsesfrom D, and D, were
inverted and sent to discriminators which generated uniform NIM pulses triggered on
the leading edge of each APD pulse. These pulses were then fed to a coincidence
counter which produced an output NIM pulse whenever the two inputs arrived within
200 ns of each other®. The single-channel and coincidence NIM pulses were counted
by an EG& G Ortec model 974 counter, under computer control via GPIB.

After aligning the system, we typically saw coincidence count rates of around
4000/sec with al apertures wide open. To improve the interference visibility, we closed
aperture A, to 2 mmand A, to Imm diameter. The mean single channel rates R,, and
R, were then around 3000/sec, while the mean coincidence rateR,5, was roughly

15/sec. From these numbers and the relations (4.19), (4.22), and (4.30) we find
OLAB AT O(‘BBB @01 (4.50)
and, with R, =8 10",

B »10°° (4.51)

® The coincidence counter was an “ AND” gate that produced an output NIM pulse whenever both
inputs registered a“logical 1" ( -1.5V to-0.6V for the NIM standard.) The 200 ns coincidence window
isaresult of convolving the two rectangular input pulses with each other; the first was of duration 150
ns, while the second was of duration 50 ns.
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which ensures that the nondepleted pump approximation (4.7) iswell satisfied.’

4.3.2 Results

We collected photocounts for 11 different values of dt, covering therange
-0.16 ps <9t < 0.16 ps. For each value of o1, we recorded counts at 11 different 6
values, producing interference fringes in both the single-channel and coincidence
counts. Counts were collected for 200 seconds at each 6 value. The total timefor all
these scanswas 9 hours. During that time, the laser power dropped steadily from its
initial value, and re-alignment was forbidden once the data collection began. Therefore,
the average pump power was measured during the course of each data taking interval, so
the drop in power could be divided out.® The data presented and analyzed here have all
been re-normalized in thisway.

Datafor three values of ot are shown in Figure 4.7. The dashed lines represent
the best fits of the datato sinusoidal curves. As predicted, the low-visbility coincidence
fringesfor large ot are in-phase with the single-channel fringes, while the high-
visibility coincidence fringe near the center is out of phase with the single-channel
fringes recorded there.

All of the coincidence data are plotted in Figure 4.8 as afunction of ot and 6. .
The datawith positive dt values were renormalized to account for a systematic error
related to the orientation of a particular quartz plate.® The resulting pictureis
qualitatively similar to the theory curves given in Figure 4.5, showing a gradual

improvement in interference visibility asdt nears zero.

" See Eq. (C.18) in Appendix C.

8 This solution to the problem is valid because Ry, Rg,, and Ryg, @l depend linearly on the pump
intensity, owing to the spontaneous nature of the downconversion.

® The data for dt >0 were all recorded with a particular .5 mm quartz plate oriented with its Slow axis
aligned to the o polarization; the orientation was flipped for the dt 0 scans, and the mean counting rate
for these data dropped by roughly 10%. The dt >0 data were therefore renormalized by this 10% factor.
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Figure 4.7 Recorded coincidence and single-channel counts as a function of the pump
mirror displacement, for fixed values of 6t. The counts have been renormalized to
eliminate the effects of laser power drifts. The pump mirror was displaced by trandating
the pair of locking photodiodes through the fringe pattern generated by the HeNe (see
Appendix D). The interference visibility reached 64% for the case ot = 0.
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Figure 4.8 (a)Compilation of al eleven renormalized coincidence fringes, recorded over
therange - 0.16 ps <4t < 0.16 ps. Note the gradual transition of the fringe phases.
The theoretical prediction in (b) includes a-10mm shift in the position of M 1.
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A maximum visibility of 64% was observed for the scan at 6t = 0. Themain
reason why this visibility was not 100% is that the losses in the Michelson
interferometer were not equal for the two arms, despite our efforts to balance them with
the pump attenuator C. Scans taken with each arm of the interferometer blocked
revealed that the red arm contributed a mean intensity of 959 + 52 counts per 200
seconds, while the pump arm contributed 1348 + 30 counts per 200 sec. The maximum
possible interference visibility allowed under these conditionsis 71%. Aswe have seen,
our best estimates for the dispersion parametersin the interferometer also resultin a
dight degradation of the interference visibility. The maximaand minimaimplied by the
sinusoidd fitsfor all 11 values of 6t are shown in Figure 4.9. The improvement in the
fourth-order interference with our symmetrized source is evident here, as the counting
rate in the center of the dip fallswell below the dashed line representing the
unsymmetrized case. The solid line isthe result of atheoretical calculation, including
dispersion and a-10mm error in the position of M1, scaled to the mean counting rate
given by the sum of the red-arm and pump-arm contributions. The data appear to bein
good agreement with this calculation.

The minimum and maximum count values on these curves represent the
conditions8'? =x and 6° = 0, respectively, for values of &t that lie between the
crossing points satisfying (4.31). Outside this range, the minimum count values must
correspond to 8% = 0, while the minimarepresent 6% =7 . The theory predicts a
sharp transition between these two regions, marked by an interference visibility of zero
at the crossing point. However, this sharp transition was not observed. Instead, our
coincidence data displayed a smooth phase drift as 6t increased -- evident in Figure 4.8

(&) -- while the phase of the single-channel fringes remained constant. The relative
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Figure 4.9 Extracted minimum and maximum coincidence counts as a function of o7.
The solid lineisacurve caculated for a pump mirror placement error of -10 um, with
our best estimates of the dispersion and pump bandwidth parameters, and adjusted for
the measured unequal contributions from the two arms of the interferometer. The
dashed line represents the expected counting rate for the unsymmetrized source: the
data point on thisline is the sum of the “red arm” and “pump” arm contributions
taken separately, without interference effects.
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Branning
The theoretical curve on this plot is in error: the unequal contributions from the two arms of the Michelson interferometer were incorrectly taken into account for the generation of this curve. The corrected version appears in PRA _62_, 013814 (2000).
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phase of the coincidence and single channel sinusoidal fitsis plotted in Figure 4.10 (a):
the relative coincidence phase appearsto vary linearly with or.

This phase drift is not predicted by our theory. A close inspection of (4.48)
doesrevedl that, in principle, the fringe attributed to the third term of the counting rate
will have an additional phase given by arg(C,, (57,640 98¢}y, allowing the possibility of
a dt-dependent phase shift. However, calculations showed that this shift is not
appreciable even with 100 times the amount of dispersion in our interferometer.
Furthermore, the magnitude of this term, which is generating the enhanced dip structure,
falsto zero fairly quickly, while the phase shift persists over the entire region of our

data. These points areillustrated in Figure 4.10 (b) - (d).

4.4 Discussion

4.4.1 Isthephasedrift in the coincidence counts a systematic error?

It appears that our second-order dispersion theory is unable to account for the
smooth phase drift of the coincidence fringes. On the other hand, it is hard to imagine a
systematic error which could produce this trend. The interferometer remained locked at
all timesin each of these regions, and the single channel fringes reflect thisin the sense
that their phases did not drift from scan to scan; therefore, the systematic error would
have to produce the drift only in the phase of the coincidence counts. Additionaly, the
phase drift never changed direction with regard to dt, despite the fact that the time order
of the scans for &t £ 0 was opposite that of the scansfor dt >0 therefore, it seems
more likely that the systematic effects are tied to the quartz plates themselves. But since
different sets of plates were changed each time to produce the various delays, one would
expect a quartz-related effect to produce essentially random phase changes with respect

to ot. Instead, the phase drift appears insensitive to how specific plates were oriented,
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Figure 4.10 (@) The phase of the coincidence fringes relative to the single-channel
fringes does not undergo a sharp transition as predicted by the dispersionless theory
(solid line), but instead varies smoothly with 6t over the range of our data. The only
term capable of generating such shiftsin the theory with dispersion included is

Cp(67,0",67,

oe’

Op) The magnitude and phase of thisterm are plotted in (b), and the

effect Figure on the relative phase between coincidences and singlesis shown in (c).
Figures (d) and (€) repeat these plots with the dispersion increased by afactor of ten.
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depending only on the total amount of quartz involved. Indeed, the two scansat 6t =0
yielded identical relative phases despite their different specific quartz plate orientations.
All of thisleads usto doubt that the effect is a systematic one.

It is possible that amore detailed calculation, performed without the assumption
(4.49), might account for this effect. Alternatively, we note that aslow drift between the
“dip” and “peak values as the delay is varied was observed in another type-I|
experiment with polarizersin front of each detector [4]; perhaps an analysisthat alows
for some imperfectionsin the PBS, so that different polarizations may appear at the

detectors, would reveal the source of this phase drift.

4.4.2 Comparison with the experiments of Herzog, et €.

In many ways, the Michelson interferometer in this experiment is reminiscent of
severd earlier experiments [5-7] conducted with a cw-pumped, type-1 parametric
downconverter, in which the signd, idler, and pump beams were all reflected back into
the crystal for a second pass to produce interference in the signal and idler modes asthe
pump phase q was varied (see Figure 4.11). However, our experiment is distinguished
from these by the use of an ultrafast pump source and type-11 downconversion, by the
addition of the HOMI, and most importantly by the exchanging of the signal and idler
beams before they are reflected back into the crystal. Furthermore, in the earlier
experiments the modulation in the coincidence rate was a direct consequence of the
modulation in the pair-creation rate, so that the coincidence and single-channel counts
were aways in phase with each other as 6 was varied. A striking departure from this
Situation occurs for our coincidence counting rate, which is out of phasewith the single

channel counting rate in the dip region near 6t = 0, and which exhibits a 64%
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Figure 4.11 (a) Earlier experiments have demonstrated nonclassical interference effects
by reflecting signdl, idler, and pump beams back into atype | cw-pumped
downconverter so that a second downconversion process could interfere with the first.
Thisleads to second-order interference at both the signal and idler photodetectors as g
isvaried, and (trivially) to fourth-order interference as the coincidences are monitored.
Unfolded in thisway, our experiment (b) shares many of the same features, but displays
coincidence interference which is out of phase with the (reduced visibility) single-
channel interference.
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modulation, while the single-channel (or pair-creation) interference visibility islessthan

3%.

4.4.3 Interpretation of theinterferenceterms

It isinteresting to note that the single-channel detection probability in (4.14)
depends on 6, but not on dt. Thisisan indication that for the single-channel counts,
some degree of interference is taking place between the two different downconversion
processes, but not between the delayed (initially x-polarized) and undelayed (initialy
y-polarized) photons. As such, we can label the interfering photons as being
“polarization distinct” but “process indistinct”. For example, it would be possible to
tell that one of these photons emerged from the PDC with, say, x polarization, but it
would be impossible to discern whether this photon was created as an e-photon in the
first process, or an o-photon in the second. The interference between the two creation
processes for these photons is manifested by a modulation as 6 isvaried.

Inthislight, it is easy to see why the second-order interference visibility
depends on the extent to which the spectra of the e and o polarized photons are smilar.
The more symmetric S(o,,®.) is the more overlap there wil I¥be between the marginal
single-photon spectra o(,) = ¢lo, o, .0,) and 6(w,)= ¢fo, o, .0, ); thatis, the
less often it will be possible to uose the frequency of the detect;d light to discover
whether adefinite x(y) polarized photon redlly started off as an (0)-photon in process
1 or an o(e)-photon in process 2. As the e and o0 spectra become more similar, these two
processes become more and more indistinguishable, leading to a higher interference

visibility as more and more of the single photons become “ process indistinct.”
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It is possible to interpret the coincidence count probability, (4.26), inasimilar
fashion, keeping in mind that all the terms represent contributions arising from different
types of coincidence detection, or two-photon, amplitudes. Once again, the term

K cos(0) isthe modulation term for events which are “ processindistinct” but
“polarization distinct”. This term arises from the sets of two-photon amplitudes for
which both polarizations are knowable in principle, but the creation processis not. The
next term, C(8t)cog(8), is the interference modulation for photon pairs which are both
“processindistinct” and “polarization indistinct”. This term arises from amplitudes
for the cases where no definite creation process could be assigned to the photon pairs,
and for which no definite polarization before the PBS could be assigned to either
photon arriving at the detectors. Thefinal term, D(8t ), is the modulation term for
photon pairs which are “ process distinct” but “polarization indistinct”. Thisterm
arises from amplitudes for the cases in which the creation process was identifiable in
principle, but the polarization of each detected photon before the PBS was not.

The last term represents the standard pulsed type Il HOM interference seenin
the previous chapter, and produces a trough structure whose depth depends on the
symmetry of the joint spectral emission amplitude for each process taken separately.
The much lower counting rate in the central dip produced by C(8t)cog(0) isthe
signature of improved interference visibility for the photon pairs with symmetrized joint
emission spectra. The degree to which our experimenta data show thisimproved

visibility is ameasure of the success of our “engineering indistinguishability” method.
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Chapter 5

L ocality violationsin thecircular polarization basis

5.1 Introduction

5.1.1 Non-violations of Bell’sinequality

We now turn our attention away from complementarity, and investigate another
celebrated feature of quantum mechanics. nonlocality. As explained in Chapter 1,
nonlocality refersto the incompatibility of quantum mechanics with the Einstein-Podol sky-
Rosen axioms known as realism and locality [1]. Thisincompatibility is apparent from the
fact that quantum mechanics predicts aviolation of Bell’ sinequality [2], which must hold
true for any local-redligtic hidden-variable (LHV) theories. In the years since Bell’'s
discovery, numerous experiments have been undertaken to determine whether nature, too,
exhibits this nonlocal behavior. If violations of Bell’ sinequality could be demonstrated
experimentaly, it would end the search for alocal-realistic theory capable of completing
guantum mechanicsin the manner envisioned by Einstein [3].

To date, no such violations have been established in aloophole-free experiment: the
difficulty isthat currently available detectors do not have high enough efficiencies for
conclusive experiments. However, the Clauser-Horne-Shimony-Holt (CHSH) form of
Bell’sinequality [4], which requires a supplementary “fair sampling” assumption, has
been shown to be violated in experiments with correlated pairs of photons from atomic
cascade sources [5-8] and from parametric downconverters [9-12]. Because the
supplementary assumption is a seemingly reasonable one, the results of these experiments
are taken by most researchers as strong evidence that the nonlocality inherent to quantum
mechanics is afundamental property of nature, and, indeed, is a signature of the nonclassical

character of entangled systems.
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There are, however, at least two published examples of experiments whose results
appear to contradict the others, in the sense that they do not violate the CHSH inequality
[13,14]. In both of these experiments, the polarization correlations of photons generated by
an atomic cascade source were measured in the circular, rather than the linear, polarization
basis. The change of basis does not affect the predictions of quantum mechanics (aswe
shall see), and should not prevent violations of the CHSH inequality. In the interest of
clarifying this situation, we performed a new measurement of these correlations with the aim

of either confirming or refuting the anomal ous results.

5.1.2 The Clauser-Hor ne-Shimony-Holt inequality

The genera arrangement required for an optical test of the CHSH inequdlity is
shown in Figure 5.1; the source in the center emits a pair of photons traveling in opposite

directions, whose polarizations are described by the rotationally-invariant entangled state
\ — 1 \ \ \ \
hv) = {10010, - DalB} (51)

The polarizations of the two photons are measured by spacelike separated observers Alice
and Bob, who pass the light through polarizers (P) and onto photodetectors (D); the
detection of a photon with the linear polarizer P oriented at an angled relative to some fixed
x-axisistaken to be a measurement of that photon’ s polarization. Assuming perfectly
efficient detectors, the quantum mechanical prediction for the probability of measuring

polarizations 6 , at D, and 6 ; at D, when the photons are in the state given by Eq. (5.1) is
1.
P©,.0;) =§sm2(95 -9,). (5.2)

The Clauser-Horne-Shimony-Holt inequality for the measured coincidence counting

ratesR(0 .0, ) is

IR(0405)- R(0,,08) +R(0£.6,)+ ROgOE- ROg-)- R-04)£0, (53)
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Figure 5.1. Experimental arrangement for measuring two-photon polarization correlations,
P(e 05 ) . A centra source emits pairs of polarization-entangled photons, which are passed
through polarizers P,, P,, and detected at photodetectors D,, D;. Provided the subensemble
of detected countsis unbiased (the fair-sampling assumption), the measured coincidence
counting rate isindicative of the correlation function. Many experiments of this type have
demonstrated violations of the CHSH inequality.
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whered , 04,0, ando g are any four polarization angles, and the dash (- ) indicatesajoint
counting rate with a polarizer removed. Thisinequality can be derived from the axioms of
locality and realism if a supplementary assumption, the so-called “fair sampling
assumption,” isintroduced. The assumption isthat if apair of photons emerges from Alice
and Bob'’ s polarizers, the probability of their subsequent joint detection is independent of
the orientations of the polarizers. This assumption alows usto identify the joint probability
in (5.2) for the ensemble of al emitted pairs with the measured rel ative frequency of joint

detections within the subensemble of al detected coincidence counts, so that

R(6,.05)
P(0,,0;)=———, 54
(64.6:) o) (5.4)
where
N' 1 ) =00 BRO (5-5)

isthe rate of coincidence detections when both polarizers are removed and the source emits

pairs at the rate R,. Note that within this subensemble,
P(-,-)°1 (5.6)

Furthermore, because the space of transverse polarizationsis a two-dimensional vector

space, we have the identities
P(' " ) ° P(GA") + P(_A’ - ) = P(' 763) + P(‘ ’e_B)
PO,,-)° P©A0:)+P04.6;) . (5.7)
P(-85)° P64.65)+P(8,,06)

Here we introduce the notation 6 © @ + 1t/2 to denote the linear polarization orthogonal to .

With the help of (5.4) - (5.7), the CHSH inequality may be rewritten as

S°|P(6,.65)- PO,08)- P(0g6:)- POLOLEO. (5.8)
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For the particular choices

0,=6,

0,=0,+31/8
0¢=0,+3r/4
0g =0, +1/8

(5.9)

the form of P(6,,,0,) given by quantum mechanicsin (5.2) yields the result

1
"3 » 0.207, (5.10)

in violation of (5.8).

5.1.3 Entangled statesin thecircular basis

Figure 5.2 shows the insertion of a pair of quarter-wave platesinto the two photon
paths with their ordinary axes oriented at an angle = n/4 to thex axis. These quarter-wave
plates connect the linear x and y-polarization modes at the polarizers (axd; ag) to right-handed

and |eft-handed circular polarization modes at the source:

(5.11)

where the RHC and LHC modes may be written more simply as properly phased

superpositions of the linearly polarized modes X and Y:

(5.12)

with inverse transformations
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Figure 5.2 Experimental arrangement for measuring two-photon correlations in the circular
basis. The quarter-wave plates Q,, Q, areinserted at an orientation y = n/4, transforming
linear polarizationsinto circular ones and vice versa. The entanglement is preserved in this
basis, and the same violations of Bell’ sinequality are predicted by quantum mechanics.
However, two early experiments performed with the platesinserted failed to demonstrate
violations of the CHSH inequality.
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=58+ )
|2 (5.13)
a, = ﬁ(éR ) 'éL)

For the right-hand side of Egs. (5.11), the modes &, = (a; + éy) N2 .4, = (éx - éy) /N2
were chosen, but because of rotational invariance, X and Y can be any two orthogonal linear
polarizations in the definitions (5.12) and (5.13). In particular, we may choose X = x and
Y =y so that the Hermitian conjugate of Egs. (5.13) impliesthat the states before the

guarter-wave plates may be expressed in the circular basis as

1
1D, = NG (e +1%0)

i (5.14)
% =% (Bs - 123.).
With these substitutions, the entangled state in (5.1) becomes
i
hy) = E(ll)ARll) BL ~ |1>AL| DBR) : (5.15)

This expression for |y} has the same symmetric and entangled form as the oneiin the linear
polarization basis, and differsfrom it only by an inconsequential phase factor. Since
measurements of the linear polarizations x¢ and y( after the quarter-wave plates are actually
measurements of the L and R modes according to (5.11), the same violations of the CHSH
inequality should result when the plates are inserted [15]. It is this conclusion which makes
the earlier faillures to observe violation the CHSH inequality under these circumstances

[13,14] so curious.
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5.2 Schematic and theory

5.2.1 Schematic of the experiment

A schematic of our experiment [16] is shown in Figure 5.3. Two photons are
emitted Simultaneously with similar frequencies and polarizations' from atype-|
spontaneous parametric downconversion source (PDC). The polarization of the signal
photon is labeled as x. The polarization of the idler photon is rotated to be orthogonal to x
by asuitably oriented half-wave plate (R,). Thex and y-polarized photons are then incident
from opposite sides on beamsplitter (BS) at near-normal incidence.

The mixed beams emerge from BS traveling in amost opposite directions and enter
analyzer arms A and B. Each analyzer consists of a quarter-wave plate (Q,, Qg), alinear
polarizer (P,, P,), and a photodetector (D,, D;). Depending on the orientation (C ,, € ,) of
each quarter-wave plate relative to x, it may produce polarizations ranging from linear
(unchanged) to circular when the input light islinearly polarized; dternatively, if the input
light is circularly polarized, the output polarization may range from circular (unchanged) to
linear. Thus, ameasurement of linear polarization after a suitably oriented quarter-wave plate
is actually ameasurement of the input light in the circular polarization basis. The polarizers
are oriented at angles 6 , and 0 ; with respect to x, and pass the linear polarizations6 , and
0, to the detectors. The coincidence counting rates R(e 0 B) are measured for various

settings (0 ,, 0 ¢, 6 5, 64) of the polarizers.

5.2.2 Quantum state of thelight

Before the beamsplitter, the state of the light may be approximated with the
perturbative method of Chapter 1:

! Though the signal and idler photons must propagate as ordinary waves inside the crystal, as demanded by
type-l phase-matching, they may emerge with different polarizationsiif the optic axis of the crystal istilted
[17]. In this experiment, they are nevertheless made orthogonal by the half-wave plate (R).



135

PDC
S |
/ R0
amA amB
RTy R, T
0, *a i 05
=N 3s L]
Qa Qs
Pa Ps
Da Dg
coincidence
counter

Figure 5.3 Schematic of the experiment for testing local realism in various polarization
bases. Theidler polarization is made orthogonal to that of the signal with the help of the
rotator R,. The photons then impinge onto a beamsplitter with reflectivities and
transmissvitiesthat are ideally equal in magnitude. The photons which emergeinarms A
and B each pass through a quarter-wave plate Q and apolarizer P before falling onto a
detector D.
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lw) =vacy +n[D, J1);

oy (5.16)

= |vac) +n|y

Here we have suppressed the frequency labels and treated the downconversion processin
the single-mode approximation (see Appendix A). The signal and idler are assumed to be
degenerate in frequency. Only the second part, |\|;(1)>, of the state [y} will contribute photon
counts.

At the beamsplitter, each photon may be transmitted or reflected independently of

the other, so that we may write[18]
v} = (RD, +T|1>Bx)(R¢J>By +T¢J>Ay). (5.17)

Thelabels A and B refer to the modes for arms A and B, and the complex transmissivities T,
T¢ and reflectivities R, R¢ characterize the beamsplitter BS?. Note that this state is not an
entangled one, because it isadirect product of single-photon states. The product may be

expanded to yield
@)= RRE 1D, + TT41 |1, + RTGL 1D, + TRED, 1D, (5.18)

Thisis apure state, representing four possible outcomes at the beamsplitter which must be
indistinguishable in principle from each other via auxiliary measurements. If it were
possible to distinguish which of these outcomes actually occurred for agiven pair of
photons, say by measuring their relative arrival times at the detectors, or their frequencies,
the pure state [y ™} would have to be replaced by a density marix representing the
(classical) probabilities of these outcomes, and no quantum interference effects would be
possible -- afact which has been amply demonstrated by the preceding three chapters. For
this reason, frequency-degenerate downconversion must be used, and the optical paths of
the photon wavepackets to the beamsplitter BS must be equal to within the coherence time
of the detected light, as described in Chapter 2.

2 Because of the near-normal incidence of the photons onto the beamsplitter, we may assume that variations
of T and R with polarization are negligible. Hence, we will not bother to distinguish between T,, T, &tc.
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All four of the amplitudesin (5.18) may contribute to the single-channel counting
rates at the detectors; however, the last two terms represent the casesin which both photons
end up in the same arm, and do not contribute to the coincidence counting rates. Thus,
coincidence counting has the effect of projecting the state onto the subspace in which one

photon is present in each arm. The (renormalized) projection of [y} onto this subspaceis

1
O\ = \SEN NEE
v = RRED |1, +TTE D, b, (5.19)
| S / \/|RR¢2 + |-]_|-¢2 { Ax By /B Ay}

which is an entangled state. It is this entanglement which allows the counting rates to violate

aBédl inequality,® aswe will now show.

5.2.3 Predicted counting rates

According to quantum mechanics, the probability of detecting apair of photons after
the polarizers within the subspace just described -- that is, given that thereisaphotonin

eacharm-- is

PAB(GA,GB)=(\|!§)|<’?II\(9 HCNENCAENC sy

) j)) , (5.20)
=[a0:)a, 0w &)

where, for the moment, we assume the photodetectors are perfectly efficient. Here a A(9 A)
and 4,(6,) are the annihilation operators for the modes reaching the detectors; due to the
action of the polarizers and quarter-wave plates, these operators may be written in terms of

the modes just after the beamsplitter as

GM)Z[COS(GM - X“)cos(xu)- e""“sin(e - X sin xu ]éux

+[c05(9u i Xu)sin(x“) e sm( Cos(xu ]aw, (5.21)

3This approach is valid provided that the beamsplitter does not transmit or reflect individual photons
according to their particular values of those “hidden variables’ which control their subsequent
photodetection; we are making atacit “random beamsplitter” assumption here [19].
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where 1 = A, B, the polarizers are taken to beideal, and thed,, are the relative phase delays
between the ordinary and extraordinary waves imposed by the quarter-wave plates’. The
parametersh and € together determine the basis (linear, circular, or éliptical) for the
polarization measurements. The operators éux ,éw are the annihilation operators for the

modes just after the beamsplitter. We then have

Ps(0.4.05) =|RR§cog(6,, - % ,)c0s(x ) - €% sin@,- x,)sin(x. )
){COS(GB' 1) Sin(2ts ) - ei%Sin(eB i X“)COS(XB)
+TT{COS(G - XB)COS(XB)' ebBSin(eB } XB)Sin(X B)

%cose - %a)SN(x4)- € sin(6, _XA)COS(XA) |2

(5.22)

ARRE +[TT¢) "
Thismay be simplified further if the beamsplitter is symmetric and characterized by the
vaues
R= Re=iT = T¢= — (5.23)
7 .

Moreover, if the quarter-wave plates have the same orientation, y , = x5 = X , thenthe

coincidence probability reducesto

Pu(61.9:) |cos(e - x)sin(8, - x )€’ - sin(@, - x)cose, - x )| .

(5.24)

Finally, if the waveplates produce identical phase delaysso that ¢, = ¢, = ¢ , thissimplifies

to become
1.
PAB(eA’eB) = ESIHZ(GB - eA)’ (5.25)

which is of the usual form for systems exhibiting violations of Bell-type inequalities, as

presented in (5.2). This result isindependent ofp and €, implying the same coincidence

* For an ideal quarter-wave plate, the relative phase delay has the fixed value¢ =kA/4; ¢ isintroduced here
as afree parameter to allow for the possibility of retardation errorsin the waveplates used in the experiment.
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probability no matter what basis (circular, linear, or dliptical) is chosen for the
measurements, as expected from the symmetry considerations in Section 5.1. The expected

coincidence counting rate is given by

I:QAB = (anB I:i)l:)AB(eA ’eB) ! (526)

where, asbefore, o, anday, represent the detector quantum efficiencies and R, isthe rate of
photon pair emission into the detected signal and idler modes.

5.3 Experimental procedure and results

5.3.1 Apparatus

The pump source was a 70 mW ultraviolet laser beam generated by acw Ar* laser
operating at awavelength of 351.1 nm. The downconversion medium wasa 2.5 cm long
LilO, crystal cut and oriented for frequency-degenerate type-I phase-matching. The signal
and idler beams had amean wavelength of A = 702.2 nm and were selected by a
combination of » 1 mm apertures near the PDC and in front of the detectors. The
beamsplitter BS had nominal values of IR® =|T|* = .500 + .005. The rotator R, was amulti-
order half-wave plate, while Q, and Q, were multi-order quarter-wave plates, al three plates
were antireflection coated and produced retardation errors of Do < KL /200.

The polarizers P, and P,were Wollaston polarizing beam splitters which transmitted
the polarization © and rejected 6 with an extinction ratio of 1:10° for the intensities,
Because these polarizers deviated the beam significantly when rotated, they were mounted
with afixed orientation and the polarization anglesd , and 6 ; were adjusted by rotating a
pair of additional half-wave plates, R, and R, through angles 6 ,/2 and 0 ,/2 (see Figure
5.4). In this manner, the light was rotated before impinging onto the fixed polarizers, which
was operationally equivalent to rotating the polarizers themselves. An additional benefit

from this scheme was that the light falling on the photodetectors aways had the same
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Figure 5.4 Diagram of the performed experiment, which differed dightly from the
schematic presented in Figure 5.3. The beamplitter was mounted on amotorized trandation
stage for the purpose of equalizing the signal and idler path lengthsto BS. Therotators R,
and R; were used to select the polarizations transmitted to the detectors by P, and P;.
Interferencefilters F, and F, were used in conjunction with apertures (not shown) to select
the frequency-degenerate downconversion.
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polarization as6 , and 6 ; were varied, so that any possible systematic effects arising from
pol arization-dependent detector efficiencies were diminated®.

The photodetectors were EG& G model SPCM-200 avalanche photodiodes with 4.5
nsjitter time, 150 ns dead time, and roughly 50% quantum efficiency. Lenses were used to
focus the light onto the active areas of these detectors, 100 mmin diameter. The 150 nsTTL
pulses generated by the detectors were used to trigger discriminators, which emitted 4.5 ns
NIM pulses that were fed to single-channel counters and to a coincidence counter. Signals
arriving together at the coincidence counter within a9 ns resolving time were considered to
be simultaneous. The coincidence counts were corrected for a background level of
“accidental” coincidences dueto the arrival of signals from uncorrelated photons within the
coincidence window; the rate of accidental coincidence was computed from the measured
single-channel counting rates and the coincidence resolving time. Interference filters F, and
Fg were placed in front of the detectors; these filters had a bandwidth of 1 nm, centered on
702 nm, and a maximum transmission of 60%.

For the counting rates calculated with the pure state in Eq. (5.19) to be valid, the
optical paths to the beamsplitter had to be baanced to within the 500 nm coherence length
determined by the filter bandwidths. To accomplish this, the beamsplitter was mounted on a
motorized trand ation stage capable of making reproducible displacements in increments of
10 mm over arange of several mm. The beamsplitter position was scanned to produce
Hong-Ou-Mandel type interference “dips’ in the coincidence counts [20]; the counts for
the experiment were recorded at the lowest point in the dip, where the quantum interference

was at a maximum?®.

® This does not eliminate the need to make a “fair sampling” assumption, since the efficiencies could
theoretically depend on the values of “hidden variables” whose measured distributions might be post-selected
on the basis of the settings6, and 6.

8 Ordinarily, this interference should not occur when the photons incident on the beamsplitter have
orthogonal polarizations: the reason is that they are distinguishable in principle via an auxiliary polarization
measurement. However, once the photons have passed through the polarizers P, and Pg, thisinformation is
“erased” in the spirit (though not the letter) of the quantum eraser experiment [21], and interference returns.
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5.3.2 Results

We collected coincidence and single-channel counts for the settingsof 6, and 6 ,
specified in Egs. (5.9), which gave the maximum violation of the CHSH inequdlity, for the
particular case 6, = 0. We also recorded the counts for the remaining polarization angles
needed to obtain R(- ,- ) viathe polarization completeness relation similar to the first of

Egs. (5.7):
R-.-)=R(6,05)+ R0,05)+ RO.0:)+R0..0). (5.27)

Typical counting rates were on the order of 50,000 per second in the singles, and from 200
to 1200 per second in the coincidences. The counts were collected for intervals of 10
seconds, and coincidence counts were corrected for accidentals. The joint probabilities
P(6,,.6,) were computed according to (5.4), and the CHSH parameter S appearing in (5.8)
was computed from these. We repeated this procedure for seven settings of the quarter wave
plate orientationsy , = %z = x ranging from O to ©t/4 ; thisimplies measurementsin bases
ranging from linear to circular, with five elliptical basesin between. We set the angles6 ,,
04, Y. and x, toanaccuracy of about 0.1°.

Theresulting values of Sare displayed in Figure 5.5. Although none of the values
equal the theoretical maximum of S =0.207 , they are all greater than 0.170, and clearly
violate (5.8). Thelargest value, S(x = 5°) = 0.192+ .005, violates the CHSH inequality by
38 standard deviations. The value found for the circular basis, S(x = 45°) = 0.174+ .006, is

inviolation by 29 standard deviations.

5.4 Discussion

5.4.1 Comparison with theresults of Clauser and Duncan, et al.

These results are in conflict with the two earlier reported experiments with quarter-

wave plates [13,14] that exhibited no violation of the CHSH inequality in the basis of
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Figure 5.5 Experimental results for the quantity Sand its standard deviation for various
settingsc of the quarter-wave plates. The largest value violates the CHSH inequality S£ 0O
by 38 standard deviations.
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circular polarizations. We can only speculate here asto why the earlier attemptsfailed, but
one clue did present itself during the course of our experiment: a dependence of Son the
parameter ¢ was observed whenever the photons did not pass through the centers of the
guarter-wave plates. This dependence could have been caused by surface imperfectionsin
the wave plates, so that when they were turned in the path of a non-centered beam, the
photons encountered dlightly different phase-shifts from one another for different settings.
This effect would invalidate the assumption ¢, = ¢, = ¢ required for thefinal, c -
independent form of the joint detection probability (5.25). In effect, these imperfections may
have resulted in the measurements of Alice and Bob not being performed in quite the same
basis, which would lead to areduction of the strong correlations necessary for the violation
of the CHSH inequdity. Thisisin agreement with Clauser’ s speculation that “ retardation

errors’ weretoo large in his experiment [13] to show the violation.

5.4.2 Supplementary assumptions

That quantum mechanics violates Bell’ sinequality, and hence, local realism, isan
undisputed fact. What is disputed is whether nature can be shown to exhibit such violations.
To cast the theoretical arguments into aform testable by our apparatus, we made use of
several auxiliary assumptions that lie outside the axioms of locality and realism required for
Bell’sinequality. Because of this, our experimental results can only be said to contradict
locality and realism if these additional assumptions are valid.

Thefirst assumption is that two orthogonal polarizations form a complete
polarization basis. This allows the use of the identities (5.7) in the derivation of the final
form of the CHSH inequality in (5.8). The assumption is common to both classical and
guantum optics, and it seemsto be natural in treating optical polarization phenomena by
electromagnetic theory. It is not often contradicted even by LHV theory advocates, but
objections have been raised against an experiment similar to this one[22] on the grounds

that LHV theories are not required to describe polarization in this fashion. Presumably,
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though, they are required to duplicate all of the well-known physical observations attributed
to the vector nature of polarization, such asMalus' Law’.

The second assumption is that the beamsplitter transmittances and reflectances are
constant, in that they do not make selections as to which photons will end up in opposite or
similar arms of the apparatus based on the distribution of whatever hidden variables might
ultimately determine their detection. This assumption validates the projection procedure that
produces the renormalized, entangled state in (5.19) from the factorizable onein (5.18). An
objection [25] has been raised against this renormalization procedure, and it has been noted
that without it, violations of Bell-type inequalities areimpossible to redlize in type-|
downconversion schemes with beam splitters like the one presented here. Theissue is not
only one of normalization, but also of the replacement of certain single-channel detection
ratesR(,),R(;) by thejoint detection ratesR(® ,,- ),R(- .0 ) that appear in (5.3).

The third assumption is the fair-sampling assumption used in the original derivation
of the CHSH inequality, and in the steps leading to (5.8). Two points should be made with
regard to this assumption. First, the inequality (5.8) may be derived with the help of a“no-
enhancement” assumption instead of the fair sampling assumption; this wasfirst done by
Clauser and Horne in 1974 [26]. The no-enhancement assumption is “weaker” than the
fair-sampling assumption, in the sense that it rules out an even broader class of local-
realistic theories[27]. Second, it has been shown that the fair-sampling assumption is not
equivaent to the assumption common to quantum mechanics that photodetectionisa
“random” process; the latter is actually a more stringent requirement than is needed for the
derivation of the CHSH inequality [28].

Finally, this experiment rests on the assumption common to all other reported
“violations of locality” except one[8]: that the properties of the photons at the source and
at distant analyzers are not affected by the settings of local analyzers even when they can be

connected by a light signal. In other words, despite the fact that spacelike separation is not

" See, as examples, the LHV theories presented in references [23,24].



146

enforced in this experiment, the two analyzer systems and the source are still maintained as
being independent from one another in the spirit of Einstein’slocality condition. This
mutual independence is crucial to the derivation of Bell’ sinequality and the CHSH
inequality, and when it is assumed to hold even for non-spacelike separated systems, it is
given the name Bell locality; the relativistic demand that only spacelike separated systems be
mutually independent is then referred to as Einstein locality or Einstein separability [29,30].

What this experiment shows, then, isthat not al of the following five statements can
be true: There exist in nature elements of physical reality as defined by realism; The
settings of one analyzer do not affect measurements at the other, or the source, as demanded
by Bdll locality; Thefair sampling assumption isvalid; Polarization is atwo-dimensional
linear vector; The beamsplitter is unbiased. The last three statements on thislist may be
regarded as “loopholes’ in the experiment, in the sense that negation of any one of them
allows the experimental results to be predicted by a LHV theory. The second statement is
also aloophole, asit is an easily-negated substitute for Einstein locality®. As of thiswriting,
no “loophole-free” violation of aBell inequality has been observed, but recent progress

toward that goal has been reported in the literature [32-34].

8 Seg, for example, the class of LHV theories proposed in [31]
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Chapter 6
Violation of locality without Bell’sinequality

6.1 Introduction

6.1.1 TheHardy-Jordan propositions

As mentioned in Chapter 1, two new proposals for demonstrating the
incompatibility of quantum mechanics with the Einstein-Podol sky-Rosen (EPR) axioms
of locality and realism [1] have been presented within the last decade. These proposals
arenove in that they alow quantum mechanics to predict outcomes that directly
contradict the expectations of local realism without use of Bell’ sinequality. While the
experiment proposed by Greenberger, Horne, and Zeilinger [2] has remained
unperformed, the Hardy-Jordan proposal [3,4] wasfirst implemented in 1994. The
results of that experiment are presented in this chapter.

The Hardy-Jordan thought experiment begins in much the same way as the
EPR-Bohm thought experiment: a source emits a pair of photons whose anticorrelated
polarizations are then measured by spacelike-separated observers Alice and Bob (see
Figure 6.1). However, inthisversion of the experiment, the polarizations are described

by the asymmetric, non-maximally entangled state
Ty :all)AxlDBy + ul}Bxl:I)Ay (6.1)
where, unlike the previous situations, a b . Normalization demands that

ld® +|4° = 1. (6.2)
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Figure 6.1 The Hardy-Jordan thought experiment, which isidentical to those presented
in Chapters 1 and 5 with one exception: the photon pairs share a non-maximally
entangled polarization state that does not possess circular symmetry.
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Now for states of the form (6.1), it is possible to find two polarization directions
for Alice’s measurement,0 ,,0 ¢, and for Bob’s measurement 0 ;,0 , which satisfy the

following four propositions

PO de,) =1 (63)
P gh,) =1 (6.4)
P©,.05)>0 (6.5)
Pe ¢6g)=0 (6.6)

where P(e A,GB) isthejoint probability that Alice finds her photon to have polarization
6 , while Bob finds his to have polarization 0 5, and P(eA|eB) is the conditional
probability to find polarization 6 , given that 6 ; has already been found.

Hardy and Jordan showed that the polarization angles 6 ,,0 4.6 5,06¢ whose
guantum-mechanical expectation values satisfy (6.3) - (6.6) must exist for all states of
theform (6.1), provided a* b. And yet, these four propositions create alogica
contradiction when analyzed with the EPR axioms of locality and realism (see Chapter
1).

The contradiction emerges as follows: the first proposition (6.3) says that on the
occasions when Alice finds her photon to have polarization6 ,, Bob will find his photon
to have polarization6 § with probability oneif he chooses to measure along that
direction. Now according to the EPR definition of an element of redlity, [1] “If, without
in any way disturbing a system, we can predict with certainty the value of a physical
guantity, then there exists an element of physical reality corresponding to this physical
guantity.” Thus, in this case the fact that the polarization of Bob’s photon can be

predicted with certainty means that the photon’ s polarization along6 § is an objective
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element of reality, which exists whether or not Bob decides to measureit. Furthermore,
locality demands that the existence of this element of reality for Bob's photon be
independent of anything Alice does at her remote location. In other words, Alice cannot
create this element of reality for Bob’ s photon by her measurements; rather, on those
occasions when Alice finds her photon to have polarization 0 ,, it must be the case that
Bob’s photon possessed the polarization6 § as an e ement of reality from the moment it
was created.

In asimilar fashion, the second proposition (6.4) guarantees that if Bob
measures polarization 0 5, then Alice will find her photon to have polarization 6 ¢ if she
orients her polarizer in that direction. In these cases, the polarization6 ¢ of Alice's
photon is an element of reality which need not be measured by Alicein order to be
considered real, because Bob can predict the outcome of such ameasurement with
certainty. And again, because of locality, Alice' s particle must have possessed this
element of reality from the moment it was created.

The third proposition (6.5) says that on at |east some occasions, Alice' s photon
may be found with polarizationd , while Bob’'sisfound to have polarization® ;.
According to the first two propositions, this means that the photons must have left the
source with elements of redlity for their polarizations along6 § and 6 ¢ aswell, even
though those polarizations were never measured. In other words, if Alice and Bob had
chosen to do so, they could have observed the polarizations 6 ¢ and6 § together instead
off , ando ;. Furthermore, because they can choose the orientations of their polarizers
while the photons are in flight towards them, locality demands that the polarizer settings
cannot alter the properties of the particles as they were emitted from the source, so that

if the elements of reality6 ¢ and6 § existed from the moment the photons were created,
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Alice and Bob should be able to observe them at least as often as they observed , ando ;
together.

But according to the fourth proposition (6.6), whenever Alice and Bob actually
choose those directions, they can never observe thed ¢ andd g polarizations together.
This, then, isthe Hardy-Jordan paradox: the first two statements imply the existence of
elements of redlity 6 ¢ and6 § ; the third implies that they should be observed together
some of the time, while the fourth guarantees that they will not be observed together at
al.

From a quantum mechanical point of view, thereis no reason why this cannot
happen. The paradox arises when considering the Hardy-Jordan propositionsin
conjunction with locality and realism, but as we have seen, quantum mechanicsis not
bound by these principles. Unlike the EPR elements of reality, which have objectively
real existenceif their values can be determined in principle, a quantum mechanical
observable takes on avalue only when it ismeasured. Thusit is meaninglessto argue
about what Alice or Bob would have observed had they changed their analyzer settings
at the last minute, however well this counterfactual reasoning may serve usin the

classical world.

6.1.2 Dutch doors

The counterfactual reasoning involved in the Hardy-Jordan paradox may be
simply illustrated by the system depicted in Figure 6.2, in which two doors are
portrayed [5,6]. Each door has an upper and lower half, which may be opened or closed
independently. Let us say that measuring a particular polarization is like opening one of
the halves of the doors, which are labeled in the figure a0 ,,0 4.0 5,0¢. Now in this

particular style of door, called a*Dutch Door,” the top half is latched onto the bottom
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Figure 6.2 Dutch doors show how the Hardy-Jordan propositions lead to a paradox
from alocal-redistic viewpoint. Open doors represent polarization measurements by
Alice and Bob. Figure (a) iIIustratesP(eA,eér) =1; Figure (b) iIIustratesP(e g,eB) =1.
These two propositions indicate that the tops are “latched” to open with the bottoms.
Figure (c) shows that the bottom two doors are sometimes open together, P(e 0 B) > 0.
Figure (d) shows that the top two doors may never be open together, P(e g,eg) =0.No
objectively real, locally independent set of Dutch doors could behave this way, but
Hardy proved that quantum mechanical observables correspondingto 6 ,,64.0;, ando §
must exist for all non-maximally entangled systems.
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half, so that it is aways constrained to open whenever the bottom half is opened.
Therefore, if the bottom-left door labeledd , is opened, we are certain that the top-left
door labeled6 § must also be opened aong with it, in analogy with the first Hardy-
Jordan proposition (6.3). Similarly, the bottom-right door islabeled6 §, and must force
open the top-right door® , whenever it is opened, in accord with the second proposition
(6.4). Thethird proposition (6.5) can now be interpreted as follows: if we examine only
the bottom two doors, we will find that, on occasion, they are both open together.
Because the doors are latched together, thisimpliesthat if we were to look at the top two
doors instead on those occasions, we would certainly find them both to be open.
However, proposition four (6.6) insists that when we actually look at the top doors, they
are never found to be open together.

This seems to create an inescapabl e paradox: no everyday system of “Dutch
doors’ could ever behave in such afashion. And yet, quantum mechanics demands that
some systems exhibit just this peculiar behavior. Once again, we have asituationin
which counterfactual reasoning, as permitted by realism and locality, can be applied to
guantum mechanical predictions to generate alogical paradox. Thefact is, only two of
the four doorsin Figure 6.2 may be observed in any given tria, so that according to
guantum mechanics, it is both impossible and meaningless to make statements about the
behavior of the other two doors. From this point of view, as espoused by Bohr [7], the
only two doors which really exist at any moment are the two which are actually |ooked
at and found to be open or closed. The paradox arises only when weinsist that all four
of them must exist no matter which two we observe.

In the words of N. David Mermin [8], the Hardy propositions “reign supreme
in thegedanken realm. There they achieve their effectiveness by leading you down the

garden path every bit as enticingly asthe full EPR argument does and then turning
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around and kicking out you of the garden with unprecedented efficiency and force.”
But we are il |eft with the question, “isit really possible for nature to behave this

way?’

6.1.3 Supplementary assumptions

For an experimental test of the Hardy-Jordan propositions with inefficient
photodetectors, it is necessary to employ the same pair of supplementary assumptions
that are used in the derivation of the Clauser-Horne-Shimony-Holt inequality in Chapter
5. Thefirst of theseisthe “fair sampling” assumption, which alows usto identify the
joint emission probability with the relative frequency of joint photodetections:
R(6,.05)

where R(B,,,0) isameasured coincidence counting rate with the two polarizers

PO,.0,)= (6.7)

oriented at angles6 , and 6, and R(- ,- ) isthe coincidence rate with both polarizers
removed as denoted by the dashes. The joint probabilities are therefore renormalized

within the space of detected coincidence counts, asis evident from
P(-,-)°1 (6.8)
which isaspecial case of (6.7).

The second assumption required for the experiment is that the space of

polarizationsis atwo-dimensiond linear vector space, so that the completeness relations
P(-,-)® P(65,-) + (8.~ )= P(- 05) + P(- 65)
P(eA" ) ° P(eAieB) + P(6A7G_B) (6.9)
P(- 85)° P04.65)+P(6,.06)
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hold. Here again we are using the notation 8 © 6 + 1t/2 to denote the linear polarization
orthogonal to 6.
Within the subspace of coincidence counts, the conditional probability for a

measurement of 6 § given ameasurement of 0 , is defined as

Pl do,) ° F;(g;:f )) _ (6.10)
Thefirst Hardy-Jordan proposition (6.3) may then be rewritten as
P(6,.68)=P{®,.-) (6.12)
or, with the help of (6.8) and (6.9),
P(6,.68)=P(0,.68) +P(0,68), (6.12)
which can only betrueif
P(0,.64)=0. (6.13)
Similarly, the second Hardy-Jordan proposition (6.4) may be written as
P6£6,)=0 (6.14)
while the third and fourth remain:
P(©,.05)>0 (6.15)
P £68)=0 (6.16)

With the first two Hardy-Jordan conditions recast as (6.13) and (6.14), the analogy with
the Dutch doors remains intact: the functioning of the latchesis now determined by the
fact that atop door can never remain closed when its bottom counterpart is opened (see

Figure 6.3.) If the doors can only be “open” or “closed,” -- i.e., if failure to observe a
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€Y (b)

(©)

(d)

never

Figure 6.3 A dightly modified version of the Hardy-Jordan “ Dutch doors.” Figures
(& and (b) now illustrate the fact that top doors can never be closed while bottom ones
are open. These conditions are equivalent to the first two Hardy-Jordan propositions if
the doors only have the states “open” or “closed,” corresponding to the two possible
orthogonal polarizations® and 6 . The last two propositions, illustrated by (c) and (d),
are unchanged.
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particular polarization with perfect detectors is equivalent to observing the orthogonal
polarization -- then thisimplies that the tops must open whenever the bottoms are

opened.

6.2 Schematic and theory

6.2.1 Schematic of the experiment

Our goal wasto carry out the Hardy-Jordan experiment by making joint
polarization measurements on correlated photon pairs in a system capable of verifying
the Hardy-Jordan propositions. A schematic of such a system is shown in Figure 6.4.
Asin Chapter 5, atype-| downconverter (PDC) emits a frequency-degenerate pair of
signal and idler photons, whose polarizations are made orthogonal with the help of a
haf-wave plate (R,) before they impinge onto beamsplitter BS from opposite sides at
near-normal incidence. The emerging photons pass through linear polarizers (P,, Py)
oriented at angles® , and 6 ; before falling onto photodetectors (D,, D;) in each
analyzer arm. The coincidence counting rates R(B,,,0,;) are measured for various
settings (0,,0,.08.049.6,.00.0¢) of the polarizers, to establish the probabilities
(6.13) - (6.16).

6.2.2 Quantum state of thelight

It was shown in Section 5.2.1 that, provided the optical path lengths from PDC
to BSare equa for the signal and idler, the light after the beamsplitter may be

approximated by the two-mode pure state

W)= RRI 1D, + T4 1, + RTED I Dy, + TRED,, 1D, (6.17)
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coincidence
counter

Figure 6.4 Schematic of an experiment to test local realism by verifying the Hardy-
Jordan propositions. Asin Chapter 5, Figure 5.3, the idler polarization is made
orthogond to that of the signal with the help of the rotator R,. The photonsimpinge
onto a beamgsplitter, then emergeinto arms A and B where they pass through a polarizer
P before falling onto adetector D. In this experiment, an asymmetric beamsplitter --
ideally with reflectivities |R* = |R¢ closeto 32% and transmissivities [TI* = [T ¢” close
to 68% -- is used.
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where the labels A and B refer to the modes for arms A and B, and the complex
transmissivities T, T¢ and reflectivities R, Rt characterize the beamsplitter BS. If we
consider only coincidence counts, this non-entangled state may be projected and

renormalized within the subspace where one photon isin each arm:

1
)= { RRED 15, + TTEL | J)Ay} : (6.18)
+

Thisis an asymmetric, non-maximally entangled state of the form (6.1), provided that
IRRE * [TT¢ . The coincidence counts observed in this subspace are indicative of the
correlations of the entire ensemble of signal and idler photonsif we make athird

assumption: the beamsplitter transmits or reflects photons at random.

6.2.3 Predicted counting rates

Asin Section 5.2.3, the probability of registering apair of photonswith
perfectly efficient detectors after the polarizers, given that there is one photon in each

arm, is calculated via the quantum mechanical expectation value
Pa(0 .0) = (w 01810 1)a4(05)3: (00)840 1) W ¥)

- e (6.19)
[ 00)a, 0, v )

Here 4,(0,) and &,(8,) are the annihilation operators for the field modes reaching the
detectors, which may be written in terms of the output modes at BS as
d,(0,) = cog6,)a,, +sin(®,)a,, 620)
45(05) = cod6;)a, +sin(0; )y, '
With the help of these relations, the joint probability in EQ. (6.19) may be evaluated [9]

as
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_[TTo(6,)sine ) - RRE&IN(,)cos(8, )’

P (9 A’eB) = |RR¢2 n |TT¢2 (6.21)
after the annihilation operators act on the state in (6.18). Similarly,
_ | [TTeos(,)cos(B g) - RRe&sin(0 Jsn(ag]’
P (9 A’qu:) = |RR¢2 " |TT¢2 (6.22)
_  _[TTa&in(@g)sin(6,)- RRwos(4) cos(eE,,)|2
Pe (9 ,&t’es) = |RR¢2 n |TT¢2 (6.23)
and
p.(0£08)= |TTacosp §)sin(b §) - RR&in(6¢)cos(6g) | (6.24)

RRE"+[TT¢"

The last three probabilities must be zero in order to satisfy the first, second, and fourth
Hardy-Jordan conditions (6.13), (6.14), and (6.16), respectively. When these conditions
areimposed, we have, with the help of the reciprocity relations [T| =[T¢, IR =|R¢, and

TR* = - T* R,
% = - cot(p,,)cot(0 )
= - tan(6 §)tan(0,,) o
= cot(6 g)tan(6 9).

These relations alow the joint probability in (6.21) to be written as

B |T|4(FF/ R*- 1)2cosz(e N
PO.0:)= (1" +1R* (1 +[T ™ cot(6,))

(6.26)

which takes on its maximum value when

tan(,) =|T/ R". (6.27)
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Egs. (6.25) then give

ten(9) =|R/T[
tan(6¢) = -[T/R (6.28)
tan(6g) = - |R/T]|

while the maximum value of P(6,,0,) for agiven beamsplitter is

P.(6,.0,) =( (- 3 (6.29)

T +1R*f1+[T/RF)
The largest possible valueis P (6,8, ) =.09 [3], which occurs when [T[ = .32,

IR® = .68 or vice versa.

6.3 Experimental procedure and results

6.3.1 Apparatus

The apparatus for our experiment [10] was nearly identical to the one described
in Section 5.3.1, with the main difference being the absence of the quarter-wave plates
(see Figure 6.5.) Once again, the pump source was acw Ar” laser beam with a
wavelength of 351.1 nm. The pump power was 100 mW, and this beam wasincident on
a2.5 cm LilO, downconversion crystal (PDC) cut and oriented for frequency-
degenerate type-l phase-matching. The signal and idler beams had a mean wavelength
of A =702.2 nm and were selected by acombination of » 1 mm apertures near the
PDC and in front of the detectors. Theidler polarization was rotated by the multi-order
haf-wave plate R,.

The measured values of the beamsplitter transmissivity and reflectivity were
IR = .30and [TI* = .70; for these, Egs. (6.27) and (6.28) yielded the following

optimum polarization angles for the experiment:
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Figure 6.5 Diagram of the performed experiment, which differed dightly from the
schematic presented in Figure 6.4. Asin the experiment of Chapter 5, the beamsplitter
was mounted on a motorized trand ation stage for the purpose of equalizing the signal
and idler path lengthsto BS. Therotators R, and R; were used to select the
polarizations transmitted to the detectors by the fixed polarizers P, and P, while
interferencefilters F, and F; were used in conjunction with apertures (not shown) to
select the frequency-degenerate downconversion.
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0,= 743
0 =-56.8°
0, =15.7°

0¢=-33.2°

(6.30)

Asin the previous experiment, the detected polarizations were selected by
rotating the multi-order half-wave plates (R,, Rg) before the light impinged onto fixed
Wollaston polarizing beamsplitters (P,, P;). All three half-wave plates were
antireflection coated and produced retardation errors of Do < Kk /200. The polarizers
had transmission extinction ratios of 1:10°. The photodetectors, spectral filters,
collection lenses, and counting electronics were all exactly as described in Section 5.3.1.

In order to verify the Hardy-Jordan conditions (6.13) - (6.16) with the joint
probabilities given by (6.7), it was necessary to show that the coincidence counting rates
R(O..04), RO£6;), and R $6¢) weredl zero, while R(9,,,8,) was non-zero. But
reporting anull result in this experiment might have begged the question, “were the
counting rates zero for the right reasons?’ Fortunately, the Hong-Ou-Mandel two-
photon interference dip [11] discussed in Chapter 3 provided away to show that the
zero probabilities were “true zeros’ and not experimental artifacts, by trandation of
BS. Asthe pure state (6.17) isonly valid when the four outcomes at the beamsplitter are
indistinguishable, any imbalance in the signal and idler optica path lengthsto BS
results in timing information which reduces the entanglement of the state (6.18). In
particular, if the path lengths differ by more than the 500 mm coherence length of the
detected signa and idler wavepackets, this timing information results in complete
distinguishability of the two-photon paths. The proper description of the system under
these circumstances is not a pure state, but a mixed state represented by a diagonal
density operator which isincapable of exhibiting the quantum interference effects

necessary to satisfy the Hardy-Jordan conditions.
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Therefore, after the polarizer angles were set by appropriate orientation of R,
and R;, the beamsplitter was trandated in 10 - 50 mm increments over arange of 1 mm,
centered near the equilibrium position where the signal and idler path lengthsto BS
were equal. The Hong-Ou-Mandel coincidence dips were then recorded for the four

critical pairs of anglesin the Hardy-Jordan conditions.

6.3.2 Results

The interference dips in the two-photon coincidence rates for each of the four
Hardy-Jordan polarization pairs are shown in Figure 6.6. Counts were recorded for 10
seconds at each position of the beamsplitter. The table shows the number of counts
recorded at the minimum of each dip; counts were also recorded at these positions for
the remaining pairs of angles required to computeR(- ,- ) viathe polarization

completeness relation
R-.-)=R(6,05)+ R0,05)+ RO.0:)+R0..0). (6.31)

The probabilitiesin (6.13) - (6.16) were then computed according to (6.7), so asto yield

the following experimental results for the Hardy-Jordan conditions:

P(6,,,64) = 0.0034 + 0.0004 (6.32)
P(6 4,6, ) = 0.0040 + 0.0004 (6.33)
P(6,,8,)=0.0990 +0.0020 (6.34)

P(6 ¢,6¢) = 0.0070 + 0.0005. (6.35)
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Figure 6.6 Hong-Ou-Mandel interference dips and minimum coincidence counts
recorded during 10 second intervalsfor all of the angles relevant to the Hardy-Jordan

conditions.
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6.4 Discussion

6.4.1 Dutch doorswith broken latches

The measured probabilitiesin (6.32) - (6.35) are meant to be compared to the
theoretical predictions for the Hardy-Jordan probabilities (6.13) - (6.16). We did not
observe true zeros for the first, second, and fourth probabilities, for reasons probably
connected to the distinguishability of the coincidence paths after the beamsplitter.
Imperfectionsin the crystal can cause mismatch of the signal and idler modes at BS,
thereby making a certain portion of the outgoing beams spatially distinguishable so as
to inhibit the interference of the two-photon amplitudesin (6.17) [12]. Even with
undistorted wavefronts, mode-matching at the beamsplitter is a delicate operation which
is degraded by dight misalignments or vibrations of the mirrors.

Nevertheless, the experimental results can be shown to conflict with locality and
realism when interpreted as follows: the first two conditions show the operation of the
“latches’ in the Dutch doors of Figure 6.3. Ideally, when a bottom door is open, the
top door is never found closed, asindicated by (6.13) and (6.14). In fact, though, these
configurations were observed in asmall fraction of thetrias, indicating an occasional
failure of the latching mechanism. For the left-hand door, the latch failed in .34 % of the
trials. Thisimpliesthat the first conditional probability (6.3) in the original formulation
of the Hardy-Jordan conditionsis not unity, but can be found via the following
argument: starting from Eq. (6.10),

Plogo,)° Zou 8

(A")

= (6.36)
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With P(9,,04) given by (6.32) and the datain Figure 6.6 used to determine
P(6,.- ) ° 0.220 +0.003 according to (6.9), the conditional probability is

P(6 46.,) = 0.9845+ 0.0020. (6.37)

That is, the latch worked correctly and forced the left top door to be open for 98% of the
trials when the | eft bottom door was opened. Similarly, we may establish that the latch

for the right-hand doors worked also with probability

P #,) = 0.9826 + 0.0019, (6.38)

instead of the unit probability given by (6.4). Now because the combination 6 ,,0
corresponding to the bottom doors was found to occur with probability .0990, we would

expect the top two doors,6 ¢,0 4 to be found in at least the fraction of the trials given by

P..(0%£6¢) = (0.0990  0.0020) " (0.9845+ 0.0020)" (0.9826+ 0.0019)

(6.39)
= 0.0950 + 0.0034,

corresponding to the dashed line in Figure 6.6 (d). However, this combination was only

found to occur with the fourteen times smaller probability

P(6 ¢,6¢) = 0.0070 + 0.0005, (6.40)

in contradiction with the local-realistic minimum by 26 standard deviations.

6.4.2 Supplementary assumptionsrevisited

Have we now verified the existence of the Hardy-Jordan “Dutch doors’ in the
laboratory, thereby proving that nature violates local realism? Just as with experiments

based on Bell’ sinequalities, the answer is“Y es, with certain provisions.”
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We recall that the first two of Hardy’s propositions were used to establish the
action of the Dutch doorsin the following way: whenever abottom door is found open
(6 , or 0 isdetected), the corresponding top door must aso be found open (64 or 6 ¢
is aso detected). We attempted to establish was something close to thisin our
experiment: if abottom door isfound open (6 , or 0 ; is detected), the corresponding
top door cannot be found closed (6 gor 4] A is not detected). If the top doors cannot be
found closed in these cases, does that imply that they were necessarily open? Only if it
istrue that there are no alternative states for the doors besides “open” and “closed”,
which isto say, that if apolarization measurement is made along axis 0§, it must either
register as having polarization 6 ¢ or the orthogonal polarization 6 §. As noted in the
previous chapter, the description of polarization viaa complete set of two orthonormal
vectorsis an established tenet of both the classical and the quantum mechanical
descriptions of light, but it need not hold for every dternative, loca redlistic theory.

We also found it necessary to assume, as in Chapter 5, that the beamsplitter
reflects or transmits photons completely at random, so that the subensemble of thetrials
in which one photon ends up in each arm of the apparatus is representative of the whole
ensemble of photons emitted from the PDC. Again, quantum mechanics incorporates
this assumption automatically, but it need not be true for LHV theories[13].

Finally, and most importantly, the detectors used in our experiment were not
perfectly efficient. Thefact isthat in some of thetrials, we did not obtain any
information at all about the polarization state of one or the other photon. It isasif our
Dutch doors were at the end of a crowded ballroom, and our line of sight was
sometimes blocked, thereby indicating failure of one of the detectors. We have made the
assumption that what we see of these doors when we get a clear view represents their

behavior at al times. Thisis reasonableif one believes, for example, that the people walk
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in front of the doorsin arandom fashion, completely independent of the state of the
doors. Thisisthe “random non-detection” type of fair-sampling assumption [14]
mentioned earlier in the context of Bell’ sinequalities (see Section 5.4.2.) On the other
hand, perhaps the people in the ballroom are performing an elaborate dance which
requires them to be in the way whenever the top two doors are open: thiswould explain
why we never see this sSituation when we look for it. At least one such theory, based on
non-random detector failure, has aready been constructed to explain the results of our
experiment in an entirely local redistic fashion [15,16].

Therefore, these experimental results do not provide conclusive evidence against
locality and realism. Instead, like the one reported in Chapter 5, this experiment
demonstrates a conflict between five seemingly reasonable statements. There exist in
nature elements of physical reality as defined by realism; The settings of one analyzer
do not affect measurements at the other, or at the source, as demanded by Bedll locality;
Thefair sampling assumption isvalid; Polarization is atwo-dimensiond linear vector;

The beamsplitter is unbiased.

6.4.3 Comparison with the experiment of Boschi et al.

Quite recently, asimilar experiment was reported by Boschi, De Martini, and Di
Giuseppe [17]. Their experimental arrangement differed from the one we have
presented in three respects. a polarization rotator was added to the signal beam
emerging from the PDC, the beamsplitter BS was replaced with apolarizing
beamsplitter, PBS, and another pair of detectors (D, , D) was added to monitor the
unused output ports of the polarizers P, and P;. By rotating the signal and idler

polarizations independently, the parameters Rand T for the PBS could be varied
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continuously" to create arbitrary non-maximally entangled states of the form (6.18) --
provided that the random beamsplitter assumption is used to validate the projection of
the state into the subensemble where one photon emerges from each side of the
beamsplitter. By monitoring the previously unused output ports of the polarizers, the
counting rates R 9 A,e R(e R ) etc. could be monitored simultaneously with the
half-wave plates set to 0 ,,0; .

Boschi et al. claim that by monitoring these additional output ports of the
polarizers, they were able to create EPR elements of reality which were more
“unambiguous’ than the ones created in our experiment. Their concern is that, in the
experiment just presented, when the polarizationsd ,,0, are monitored, nothing can be
said about the photon pairs which were not detected -- that is, whether they went
undetected as aresult of detector failure, polarizer absorption, or polarizer rejection
(indicating a polarization of 8, or 6,). The authors claim that it is unsatisfactory to
monitor the rates R eA,e R(OA,G ) seperately, aswe did, in order to establish the
conditional probabilities (6.3) and (6.4). They state that only by monitoring all four of
these rates together can one claim to have established an element of redlity
“unambiguously” according to the EPR criterion that “every time D, (6,) registersa

‘click’ on mode-B... a“‘click’ isalso registered by D, (6¢) on mode-1 and never by

5,(6,)."2

However, thisclaimisinvalid for their experiment, just asit isfor ours, because
in both cases the detectors were not 100% efficient. If there is one photon in each mode,
then when Dy, registers aclick, there is aless-than-100% chance that a“click” isalso

registered by D, (or D, ). In both experiments, the claim that the polarization of a

! However, the experiment must be performed with fixed values of these parameters.
2 Thisis quoted directly from reference [17], with the angle notation adapted to be consistent with that
of this chapter.
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photon emerging from one side of PBSis an EPR “element of reality” rests on the
ability to predict with certainty that photon’s polarization whether or not it is measured,
when the other photon possesses some other polarization. In other words, one must be
able to say that every time a photon in arm B is found to have polarization 6 5, the
photon in arm A must be found to have polarization 6 §. But in practice, this can be
established experimentally only for the detected photons; nothing can be said about
photons which went undetected.

However, if we assume that the distributions of measured events are
representative of what would have been measured with ideal (100% efficient) detectors,
then something that happens with probability one within the subensemble can be used
to establish a property for every photon whether or not we have actually measurediit . In
this manner, both experiments rely on the same fair sampling assumption to establish
the existence of the EPR elements of redlity.

Also, because both experiments assume, in the spirit of Einstein locality, that the
properties of the emitted photon pairs are independent of the analyzer settings, it does
not matter whether therates R(@,,0;), R(6,,8; ), etc. are measured simultaneously or
not. In both cases, the counterfactual reasoning needed to construct the Hardy-Jordan
paradox is made possible by the combination of realism and locality. Asin Chapter 5,
the locality assumed for this experiment is the stronger Bell locality, which insists that
the analyzers and source are all independent of one another even when they do not have
spacelike separation.

The experiment of Boschi et a., like the one outlined in this chapter,
demonstrated that the three probabilitiesin (6.13), (6.14), and (6.16) can be near zero,
while the probability in (6.15) is nonzero. With the same supplementary assumptions,

their data violated local realism by 14 standard deviations. Despite some superficial
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differences, then, the results of Boschi et a. show no more and no less than the results

reported here.
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Chapter 7

Summary

In the first part of thisthess, we examined a series of experiments that
highlighted the central role for interference of distinguishing “which-path”
information. In the quantum eraser experiment of Chapter 2, we encountered a subtle
variation on thisidea. Because the idler photons from the two downconverters are
capable in principle of being used as “which path” markers for the signals, the
counting rate at the signal photodetector does not display interference. However, when
we recombined the idler beams and destroyed their function as “which path” markers,
the interference returned, in that we could recover subensembles of the signa counts that
exhibit fringes and “antifringes.” The determination of whether agiven signal photon
detection belonged in the “fringe” or “antifringe” set was made by correlating it with
the outcome of the polarization measurement of theidler photonsin the “eraser” basis.
Thetotal set of single-channel signal counts, being the sum of the “fringe” and
“antifringe” subensembles, till did not display interference. Thisis areflection of the
fact that, as far as second-order measurements were concerned, it was still possible, in
principle, to identify the path of the signal photons, because the idlers could have been
used instead as which-path markers without disturbing the signal measurementsin any
way. Interference only returned in those fourth-order measurements where the “which
path” information -- contained in the idler polarization -- was erased.

In Chapter 3, it was shown that spectral information can also serveto identify the
paths of photon pairsin a Hong-Ou-Mandel interferometer. In particular, spectral

distinguishability of the photon pairsis the (sometimes unwanted) result of pumping a
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type-11 downconversion process with an ultrafast pump. If ultrafast type-11 processes
are to be considered as sources for multi-particle quantum interferometery experiments,
this spectral distinguishability will have to be reckoned with. A novel method of
restoring spectral indistinguishability to these photon pairs -- by symmetrizing their
joint emission spectrum -- was demonstrated in Chapter 4. Though the source of a
peculiar phase shift in the fourth-order fringes was never identified, the method was
shown to improve the visibility of the quantum interference of these photon pairs quite
dramatically, without the loss in counting rates or timing resolution that would result
from the use of spectral filters. The link between the symmetry of the joint emission
spectrum and the indistinguishability of the photon pairs may be exploited by
researchers to improve designs for quantum teleportation experiments, quantum
computing schemes, or nonlocality demonstrations with multiple particles.

A truly vast literature on the completeness of quantum mechanics and related
guestions has arisen since the publication of the famous Einstein-Podol sky-Rosen
paper in 1935. In the intervening years, Bell’ s theorem was used to show that quantum
mechanics cannot be completed by a deeper theory of local-redistic hidden variables,
and this pointed the way to experiments that might determine whether this
“nonlocality” isjust a strange flaw in an otherwise sound quantum theory, or a strange
fact of nature that is correctly described by quantum theory. While the experimentsto
date have not been able to answer this question conclusively, they do make one thing
abundantly clear: thelocal hidden variable theories which remain as contenders must be
at least as counterintuitive as quantum theory, in that they can preserve locality and
realism only at the expense of the fair-sampling assumption. The nonlocality
experiments of Chapters 5 and 6 are similar but weaker demonstrations of thisfact,

because they require the use of an additional “random beamsplitter” assumption due to
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the way the entangled state was generated. Nevertheless, it is the hope of this author that
the experiment reported in Chapter 6, in particular, might have some value asasimple
demonstration of how counterfactual reasoning about the outcomes of quantum
mechanica experiments can lead to unavoidable logical contradictions.

A major goal of theresearch in thisfield isaconclusive, loophole-free test to
determine whether or not nature is bound by locality and realism. Such an experiment
could be based on Bell’ sinequalities, Hardy’ s propositions, the Greenberger-Horne-
Zeilinger measurements, or on some other scheme which has yet to be discovered.
Whatever form the experiment ultimately takes, it will certainly rely on quantum
interference effects of entangled particles like the ones reported throughout thisthesis.

The author has participated in several research efforts not described in this
thesis. These include an experimental demonstration of time-dependent interference, a
theoretical investigation of downconversion in the presence of phase-conjugate mirrors,
an experimental test of alocal-hidden-variable model for photodetection, and a
theoretical analysis of multiphoton interference effects at a beamsplitter. Accounts of

these areincluded in the list of publications.
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Appendix A

Quantum state for type-I downconversion
with a cw pump

A.1 The interaction picture and the weak-field
approximation

All of the analysisin this thesis has been carried out in the interaction picture, in
which the Hamiltonian describing the system is written as the sum of afree Hamiltonian

and an interaction Hamiltonian:
H=H, +H,. (A.)
The time evolution of any operator isthen governed by the Hel senberg equation of

motion using only the free Hamiltonian,

£6) =[60.A,) (A2)

while the state of the system at an arbitrary time, |y (t)), evolvesfrom theinitia state

[y (0)) viathe Schrédinger equation with only the interaction Hamiltonian:
N -1 e ’
v (1) = expg- QH, (19t w (0)). (A3)

If the interaction described by I:II iIsweak, and if the interaction time T is short,
we may approximate this unitary transformation using the first two terms of the Taylor

series expansion for the exponential in (A.3). Thisresults in the (non-unitary) evolution
IR .
v (7)) @+ & H (1o (0). (A4)

We will take theinitia state of the system to be
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hw (0)) =10}l0}; © Ivac) . (A.5)

That is, there are initially no photonsin either the signal or idler modes.

A.2 Hamiltonian for the parametric downconversion
interaction

To carry out the procedure above for the downconversion system shown in
Figure A.1, we must find expressions for the quantized free and interaction
Hamiltonians for the fields within the downconversion crystal. We begin with the
classical expression for the total energy of an electromagnetic field in adielectric

medium within avolume V :

> (D
[EEN

B*(r,t) + E(r,t)xD(r,t)

o0 O
o
-

[ e

(A.6)
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B?(r,t) +€,E*(r,t) + E(r,t)xP(r.t)

e o el

Thefirst two terms are the energy of the free electromagnetic field, while the last
represents the contribution from the induced polarization within the medium. The
induced polarization may be written as an expansion in powers of the incident electric

field, with the leading terms
P(r,t) =3 WE(r D)+ x PE(LHEC.Y, (A7)

where X(l) and % @) are the first and second-order electric susceptibility tensors which
characterize the linear and lowest-order nonlinear responses of the medium,

respectively.! Aswe are considering the interaction to be due to the nonlinear response

! This relation describes an instantaneous response to the incident electric field, implying that the
susceptibilities are independent of frequency. Thisis not strictly true, of course: the nonlinear media do
exhibit dispersion, and in fact the dispersive properties can become important in the ultrafast domain,
where large pump bandwidths are involved. For the moment, we shall restrict our attention to
frequencies far from any resonancesin the material, so that these dispersive effects are small.
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of the medium, we will include the linear response as part of the free Hamiltonian, so

that
o] e U
H, 10 d rel B*(r,t) +eE*(r,t)g (A.8)
20, €U, U

wheree =¢,+ x? isthelinear dielectric constant of the medium. This leaves uswith

the interaction Hamiltonian

1. 2
Hy = Qd rE(r,t) < PE(r,HE(r,1). (A.9)

To make the transition from the classical to the quantum mechanical description
of this system, we must quantize the fieldsin the above expressions. Some care has to
be taken in doing so, but aslong as we remain in the perturbative regime where the
nonlinear interaction isweak, we can follow the usual prescription of replacing the
classical eectric fields with their corresponding free-field Hilbert-space operators.
These operators are constructed by decomposing the fields into sums over a discrete set
of modes that are planewave solutions of Maxwell’ s equations within a quantization
volume L*, and then replacing the time-dependent parts of the mode functions with the
photon annihilation and creation operators a(t) and a'(t). Theresults are

~ 1 o ” K n

E( )=z (o)fa.0e 7 - 8L(De.e™] (A.10)
and
B9 = 1328 10) 3,00 e ) L0 )] A

where /(o) © i\/in/2¢e . The polarization label s = 1,2 denotes the two orthogonal
transverse polarizations that are allowed at each frequency, the €,  are complex unit

vectors describing the two basis polarizations for each mode, and k = kg isthe
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propagation vector for each mode, with magnitude equal to the wavenumber
k =wn(m)/c, and direction K . Here n(w) is the frequency-dependent index of
refraction in the dielectric. The annihilation and creation operators satisfy the

commutation relations

[ak,s(t ’é‘lq m(tq)] = 6k,k‘I:éSss(
[8(t).8u(t9] = 0 (A.12)
[él,s (t)’é;tzstr(tq)] =0

)
)

and are “ladder” operatorsin the sense that they change the number of photons, n, in

the mode k, s according to

ék,s(t)ln) ks = \/ﬁl n- 1);(15

k (A.13)
al;r,s(t)ln)k,s = n+1ln +1)k,s'

A.3 Dynamics of the field operators

It is helpful to compute the time evolution of the field operators. Using (A.10)

and (A.11),the quantized Hamiltonian for the free fields may be written as

H, = & ho(a] (D4, .(t) +3). (A.14)
k,s

This Hamiltonian can be inserted into (A.2) aong with the commutation relations

(A.12) to show that in afreefield, the annihilation and creation operators evolve in time

according to
d . R ~
28,00 =2[8,.0.A] = 03, ()
q 1 A (A.15)
% a(t) :E[Ats(t), H] =ind/(t)

with solutions
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a,.(0)=4,(0)e™
at . (A.16)
al.(0)= 4.0
Thefree dectric field operator may therefore be rewritten as
E(r )= = & ()4, £, 8 + h.
L= s (A.17)

=E(r,0)+ EC)(r,t)

where the notation for the time argument of 4, ,(0) has been suppressed. The letters
“h.c.” stand for the Hermitian conjugate of the term immediately to the left. E(r ,t)
is often referred to as the positive-frequency part of the electric field operator, and is
also known as the complex analytic signal. For one-dimensional problems, asimpler,

scalar version of this operator, for which /(o) ° 1, is often used:

EN(r,t)= % aa e, (A.18)
k,s

Thisrepresents asingle field component, dimensionally renormalized so that the
product E©E™) has units of photons per second. The quantity dm =2rd/L isthe

mode-spacing within aone-dimensional “quantization length” of dimension L.

A.4 The multimode state

We are now in aposition to computely (T)} in Eq. (A.4). Weintend to
substitute the field operator (A.17) into (A.9) to produce an explicit expression for |:|I ,
which can then beinserted into (A.4). We note that the electric field within the

interaction region is the sum of the pump, signal, and idler fields,
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E(r,t)= E,(r,t) +Ei(r,t) +E, (1)

(erwt)

:Fé‘ ((0)a &€ +h.c.
kp
1 N i(k -o A.19
o B H0)A e, 85 he A9
kS
1l o A i(kix-ayt)
+F a (w)a £e + h.c.
k

Here we have incorporated the fact that type-1 phase-matching conditions require the
pump to bee-polarized, while the signa and idlers are both o-polarized. Inserting this
field operator directly into (A.9) yields a plethora of terms, most of which will not
contribute anything when acting on theinitial vacuum state. The most important terms
for downconversion are

88 7% el g 4 A, +he (A20)

o ke Kk

1
F

Q,)o

H, =

NI

=

Wherexgg isthe element of the electric susceptibility tensor that couples the pump field
with e-polarization to the signal and idler fields with o-polarizations’. The first term
above corresponds to the downconversion process, indicating the annihilation of a pump
photon and the creation of asigna and an idler photon. The Hermitian conjugate of this
term corresponds to up-conversion, in which the signal and idler photons are annihilated
to produce a pump photon; this term gives a zero contribution when the initial signa
and idler state is the vacuum, but is included here to ensure that I:|I is Hermitian.

For the case of cw pumping, the pump field isusually taken to be a
monochromatic plane-wave, consisting of only a single mode with propagation vector

k,, and frequency w, . Furthermore, it is considered to be intense enough that it is not

2 The notation that indicates the frequency dependence of the susceptibility has been suppressed. By our
earlier arguments, thisterm is not allowed to depend on frequency, but we will see shortly that we can
include a frequency dependence for the susceptibility quite easily.
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significantly affected by the occasional annihilation of one photon. Because the pump
field isusually produced by alaser, it istaken to bein a coherent state IV)kp o Whichis
aright eigenstate of the annihilation operator ékp - With these assumptions, we may
treat the pump as a classical monochromatic field with a constant amplitude V,:

i(kpx - ot)

E,(r,t) = Ve, (A.21)

Using thisinstead of the mode expansion for the pump in (A.20) yieldsasimpler
interaction Hamiltonian:

1
C

~ |k-k-k-)>r

Ao=>=8 AV lesee ™ " P edte gl g +he (A22)
kg k;

NI

We may simplify it further by noting that the important signal and idler fields
are sums over the range of detected modes, as determined by the apertures depicted in
Figure A.1. For small apertures, the range of alowed propagation directionsis
sufficiently restricted that we may consider the pump, signal, and idler fields all to have
fixed propagation directions x, ,k, and ;. Then we may replace the sum over

propagation vectors with a sum over frequencies.

H, = % é;_w aa 00,0 VoxZe € ee (op-0q-0 )tF(oop ;ms,mi)ak:oall ,the  (A23)
TE (,l] (D

Here dm is the mode spacing, which isusually taken to the limit 5w ® O asthe sums

are replaced by integrals at the end of any calculations. The function
Flo,o,o, Tel
(0 )= xz !, G're

_ ool (o.)%0 Osmc[( (0,)- ks(ws)-ki((ﬂi)) Em].

kkk

(A.24)

m
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idler 5 D

Figure A.1 A cw pump beam produces signal and idler beamsin the process of
spontaneous parametric downconversion. The signal and idler beams are produced over
arange of propagation directions, but this range is narrowed by placing pinhole
aperturesin front of the detectors, so that we may treat the signal and idler beams each
as having a single propagation direction.
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is the phase-matching function for the pump, signal, and idler modes. The various 7
refer to the x, y, and z dimensions of the interaction region (see Figure A.2), and r, is
the position at the center of the interaction region.

Inserting the interaction Hamiltonian in (A.23) into (A.4), and letting the

creation operators act on theinitial vacuum state, we have

Vlg)( ZA W, - Wg - 0
v (7)) =hvac) + Sz g dt¢§aa I (00,0, )0, 0 (829
0 ®;
where the parameter
0° TemEeteko (A.26)

reflects the strength of the coupling between the modes. Carrying out the time
integration gives
(wp Ws- O )T/2

| )+ _aa Ts % p- WYs T~ iT
[y (T)) =|vac) +n 2 aa smc[ (a) o (o)] A2

Fopo,0), JB

I(,\)i,O

where we have dropped the directional mode labels k., k; in favor of frequency labels
,;, and the dimensionless parameter

° M (A.28)
17
is the magnitude of the perturbation on the initial vacuum state.
The state in (A.27) represents a superposition of amplitudes for emission of a
signal and idler pair at various discrete frequencies. It is often referred to asthe

“multimode” state for parametric downconversion. We see that although the pump was

taken to be monochromatic, the signal and idler photons each have arange of possible
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Figure A.2 The interaction volume is determined by the length of the crystal along the
direction of propagation, z, and by the transverse dimensions of the pump beam, which
istaken to have arectangular cross-section for smplicity.
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frequencies, weighted by the product of SiﬂC[}l (cop RO coi)T] and F (w o O, 0, )
Thefirst of thesetermsis peaked at the value

®,- o, -, =0, (A.29)

and for interaction times that are long compared with the coherence time of the
downconverted light, it behaves somewhat like a delta function that ensuresthe fields
satisfy the energy conservation phase-matching requirement. Since the pump frequency
isfixed, thisterm really only places a constraint on the sum of the signal and idler

frequencies. For thislong-timelimit, it is possible to rewrite the multimode state as’

hyy =Ivacy +n80d F (0,0, - ws)l%s,Jl)wp.ws,o (A.30)

where we have suppressed the notation for the time dependence of |y}, whichis
understood to describe the light at atime after the downconversion interaction is

completed. Inthelimit 6w ® O we have the continuous multimode superposition state

¥
lw) =Ivach +n o F (0,0, - 0 J, B, ., - (A.31)
0

The statesin the preceding two equations are examples of frequency-entangled states,
because they are pure states for the signal and idler photon pair which cannot be
factored into products of separate states for each photon. When the photons are emitted,
the frequency of each one isundefined until it is measured -- but because of the
anticorrelation guaranteed by the phase-matching function, a measurement of either the
signal or the idler frequency aoneis enough to determine the frequency of both

photons.

% In the following two equations, the phase-matching function F has been redefined, and has the
dimensions of inverse frequency
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A.5 The two-mode state

In the expressions above for the multimode state, the phase-matching function F
determines the relative weights in the sum for the various alowed combinations to be

emitted. Inspection of (A.24) revedl s that thisfunction is peaked at the value

k,(0,)- k(o,)- k(®)=0, (A.32)

becoming more sharply peaked as the interaction region dimensions 7, are increased.
In thelimit of infinite interaction volume, F becomes a delta function which ensures
that the momentum conservation phase-matching requirement is satisfied.

Of course, in practice the downconversion crystals are not of infinite length, and
the pump modeis not an infinitely wide planewave, so that F may be nonzero over
quite a broad range of values form, andw;. This broad bandwidth indicates that the
signal and idler photons are actually excitations of “wavepacket” modes which may be
quite short in duration. In the lab, with typica crystal lengths of severa cm and beam
spot sizes of afew mm, these wavepackets may only be afew psin duration,
corresponding to bandwidths on the order of 10" Hz.

Nevertheless, it is often convenient to treat the signal and idler modes asif they
were monochromatic, rather than broadband. The motivation for doing so isthat it
smplifiesthe analysis of amost any experiment, while still demonstrating the
nonclassical features that we have discussed in the previous sections. This assumption
can be made quite easily by restricting the integral in (A.31) to just those frequencies
that exactly satisfy the momentum phase-matching condition. In this monochromatic

approximation, we have

by (T)i =Ivac) +niL),_J1, , (A.33)
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wherethe factor 1 now includes the product SoF (o,,®,). This state is a reasonable

approximation so long as the wesak interaction condition
nl* <<1 (A.34)
is satisfied: the state is then normalized according to

fv (Tl (T)) =<vaclvac) + i, (UL, o o oS, o

=1+|° (A.35)
@i.
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Appendix B

The quantum state for type-I1 downconversion with
a broadband pump

B.1 Derivation

In Appendix A we derived an expression for the two-photon state produced in a
cw-pumped type-1 downconversion process. We will follow the same perturbative
procedure here, but with the added complications that come from type-11 phase-
matching conditions and the broad range of frequencies available for downconversion
within the ultrafast pump pulse.

The collinear type-1l downconversion processis depicted in Figure B.1, in
which a collimated pump beam isincident on abirefringent nonlinear crystal. We will
consder the downconversion produced by asingle pump pulse, with an electric field

given by

EX () = Vv(z- ct)eeei(k"(w")x'w”t). (B.1)

p

Here V, represents the maximum amplitude of the pump field, whilev(z - ct) isa
dimensionless “envelope” function which propagates in the z direction. Once again we
are treating the pump field classically and assuming that the non-depleted pump and
coherent-state pump approximations hold (see Appendix A). The pump beam is
assumed to have alinear polarization €, along the extraordinary axis of the crystal,
while the signal and idler fields are assumed to have polarizations along the ordinary
and extraordinary axes, respectively, as demanded by the type-11 phase-matching
consderationsin Section 1.3.3. Furthermore, the pump, signal and idler propagation

directions, x, ,k, and k; areall fixed for collinear propagation along z, so that sums
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Signal (0)

Idler (e)

Figure B.1. Type-Il collinear parametric downconversion. For negative uniaxia crystals
such as BBO, the pump wave must have extraordinary polarization, while the signal and
idler beams have ordinary and extraordinary polarizations, respectively.
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over the propagation vectors may be replaced by sums over frequencies. Experimentally,
this condition is ensured with the help of the pinhole apertures shown in Figure B.1.
With these considerations in mind, we may take the interaction Hamiltonian in

the interaction picture to have the form

T 1 6 ~ x ok N -ilo to, -0 i +k_ -
A :——‘”é 8 VLl £ty 38 (opresreclgllioetkyz. o
22n Y
(B.2)
s At At
ak(mO ),oa'k (0e)e +h.c
by analogy with equation (A.22).

In the weak-interaction limit, the state after atime T is then

Iy (T)) @21 % ttydtttavac‘
é

g @ Smaaqje o, - 0, u))tel(k K, - ke) (Z Ct@ (B3)

®, 0,

=@+
é
" g(w,)al(w,)+ h.c.]|vac)
where g °© xeo e £, inanalogy with (1.26), and the notation
At At
a(o,)° 8, (B.4)

has been introduced to represent the creation operators for the signal and idler modes

with frequenciesw, andw,, and polarizations n = 0,e. Next we et

cte¢=z- ct¢ (B.5)
so that
€ VLD o o o [kl ko) ko) (0,- @0 el
T \ — + 0~ x™y e hY Ze p p p
|W( )/ gl i% o o, 2‘

(B.6)

' (\)Zlcc_gt“’w(d@é(%me "G (0,)A](0,) + h.c.E] vac)

with the full time dependence of the pump field represented by
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w(t)o v(ct)e®". (B.7)
Because w(t¢} is nonzero only for asmall range of times, the limits of the time integral

may be extended to +¥ , so that the state is then given by

é gixf 0 0 -« i[(kp(mp)— Ko (@o)- ke(u)e))— (wp— 0, -0 )/c]z
v(T) =8+ —25w ze
v e In 2 2 ¢ (B.8)
“o(o, 0, )a(w,)al(o,) + h.c.]| vac)
where
(@) ° —= & dw(D)e (B.9)
2n O, '

isthe Fourier transform of the temporal profile of the pump pulse. The z-integrd yields

¢, multiplied by the phase-matching function

F(cop;wo,coe) :9nc[§{(kp(mp)- k(®,) - K(we))- (wp -w,- we)/c} L]

. ei(kp(w o} Ks(©0)- (@ ))2,

(B.10)

where L = ¢, isthelength of the crystal along the direction of propagation. If the
crystal iscut and aligned for type-11 phase matching, the second term in brackets

reduces to zero, so that this function takes on the familiar form
Flo,0,)= & (ko0 0702 ) (00)- K (02)) sin<{%(kp((00+we)- k,(0,) - K(we)) L] (B.11)

The state is now given by

u
hy) §.+n6coa a oo, + o)F (0,0.)a (,)a(o,) + h.cdvac) (B.12)

0, 0, u

with the dimensionless parameter

v
o d Fleh (B.13)
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defined in much the sameway asin (A.28). We have dropped the dependenceon T in
the notation for [y}, with the understanding that the state is vaid (up to a phase) for al
times after the interaction is completed. Letting the creation and annihilation operatorsin

(B.12) act on the vacuum state yields the final expression

ly} =Ivac) +nd0d A o (@, + o, )F (©,.0.)o,) jo.)

o/ol*e/e
@ o (B.14)
=|vac}) +1']|1|1(1)),

where we have introduced the following notation for afock state with asingle photonin
the signal or idler modes:

|(o“>n 0 é‘;(wu)lvac). (B.15)

B.2 Normalization
The norm of this stateis

wiyy=1+hfB (B.16)
where

F (00,0,)

B° {y®ly®) =) & 8 oo, +o.) (B.17)

0w,

o e

is the dimensionless norm of the state |I|I(1)> .Taking the limit as the mode spacing o

tends to zero we have

¥¥
B= (‘I‘):imodme|oc(mo + coe)|2|F (mo,we)r . (B.18)
00
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For the particular choice of a normalized gaussian pump spectrum centered at twice the
mean frequency of the degenerate signal and idler beams, we have

&, 0 - 20 QZ

2 %

= , B.19
oo, +o,) She (B.19)

so that B becomes
g=22m (B.20)

ot
with
ak k0

0L C—= . =1 B.21
T Lgam amjm (B-21)

The statein (B.14) isavalid approximation so long as the magnitude of the

perturbation on the initial stateis small. This condition is satisfied when
Iy ¥ ™) =B <<1. (B.22)

In this case, the norm of the statein (B.16) is approximately equal to one, even though

vV} isnot normalized to one.
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Appendix C

Quantum state for the “Engineering
| ndistinguishability” experiment

C.1 Derivation

In Chapter 3 and Appendix B, the labels 0 and e were used for the polarizations
of the signal and idler beams created in a collinear type-11 downconversion process.
However, because each photon from the new source in Chapter 4 is a superposition of
an e and an o-polarized photon from the two creation processes, we can avoid some
confusion by choosing new polarization labels for the signal and idler modes. We will
identify the polarization direction parallel to the optical table and to the extraordinary
axis of the PDC, as x, and the polarization direction orthogonal to thisasy (see Figure
5.1b).

The dectric field of the e-polarized ultrafast pump pulse will be treated

classically, asin Appendix B. Theformisidentical to that givenin (B.1)

EX () = Vv(z- ct)eeei(k"(w")x'w”t). (C.2)

p

Initially, the signal and idler modes are unoccupied, in the vacuum state. After

the first pass through the downconversion crystal, the state of the light is given by

|~

Iy, @gu =4 I:I,l(t(ﬁdtagvac) (C2)

St

where T isthe interaction time (equal to the pump duration), and the interaction

Hamiltonian in the interaction picture has the form analogous to that in (B.2):
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~ 16 ~ * % N -ilo to, -0 i(k, +k,-ke)z
A, =550 & & Ville g, e o el iz o
221 o o (C3)

s At T
qqmo ),yak(me), X + h'C'

Following the procedure in Appendix B, equations (B.3) - (B.14), we have for the

guantum state of the light after the first pump pulse:

e o o X X v
|\|j1/ = é'+ 1]8(0 a a o (O‘)O + me)F (mo’me)aJl(wo)ale((De) + h-C.l;lV&C)
e

% o u (C4)
o O
=|vac) +ndw Q @ o (0, +0,)F (0, 0fo,) o)
W, O,

with ) defined in (B.13) and F (@,,,) defined in (B.11). Theterms (o, ) and
wu)n have the meanings given in (B.4) and (B.15), with the polarization |abels x1 and
y1 denoting the signal and idler modes for the first downconversion process.

After passing through the | /4 plate twice and being reflected back into the
downconversion crystal, the signal and idler photons have their polarizations exchanged,
while their frequencies are preserved. The field operators for the modes returning to the
crystal are therefore related to the “ process one” signal and idler modes by

4, (0)= -4,

8,0,) = d,(02) ()

Thus, the state before the second pass of the pump pulse may be rewritten in terms of

thefinal field modes as

lw.) =Ivac} - nde a a o(w, +u)e)F(o)o,u)e](oo>x|oa ) (C.6)

e/y *
Wy O

The signal and idler modes for the second downconversion process are related to those

for thefirst process by the phasesd = I<S((ns)£sjgmaJ ando, =k (mi)ﬁ Meanwhile, the

idler *
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pump pulse has acquired aphase 6, = k, (w ) ounp dUring its propagation to M1 and
back, so that the interaction Hamiltonian for the second downconversion process is
given by

- 0100 o

H,=€'>— a a Voiggsee’;eyxfy(‘Jalze'i(“’”“""“’e)tei(kp Hokly(z- o)
22m (C.7)

ot t
a'k(wo),ya'k((ne) X +hc
where® ° 6, +6, - 6. Treating [y} astheinitial state for the second process, the state
of the light after the second interaction is

v é—+e'en8wa a oo, + 0, )F (0,0.)8) (0,)a(0 )+hCljw1/ (C8

0, 0,

L etting the creation and annihilation operators act on |\|;1) and keeping only the terms

of lowest order inm gives
|l|l/ :|V8C>- T]&Dé é Oc(("‘)o +('0e)F ( @0 )wol |0‘)er

+&€Mdmd oo, +o,)F (@, o, )o,) |oae,X

Mo e

(C.9)

which may be written more compactly as
v} =lvac) #1808 & a0, +0,)F @0 flo) 0., - o, o.)]

00 o0 (C.10)
=|vac} +n|y )

C.2 Normalization

The norm of this stateis
(wly)=1+2n°(B- Kcog6)) (C.11)

where
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B=(50)’a é|oc( . o) ,coe)2 (C.12)
asin (B.17), and
° (o)’a alel, +o ] F'(0,.0,)F(0,0,). (C.13)
Asin Appendix B, we may evaluate these termsin the limit dw ® 0 using the
normalized gaussian pump spectrum
2 %‘MQ
to,) = e ° 7 C.14
oo, +o,) ~ (C.14)
giving
g = /2m (C.15)
(0N
and
e Jor U 8@5(1: +1,)0
K=2Bé———{ er o C.16
ot +1)0 & &2 o (.10

The state in (C.10) isavalid approximation so long as the magnitude of the perturbation
ontheinitial state issmall. Noting from the integral definitions of B and K that K £ B,

we see that

(C.17)
£ 4B
Evidently the condition for the “weak interaction” approximation is
WY EM[4B <<1. (C.18)
Once again, the norm of |y is approximately equal to one even though |y} is not

normalized to one.
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Appendix D

L ocking system for an interferometer

D.1 Conceptual arrangement

In the experiment described in Chapter 4, two downconversion processes were
generated within a Michel son interferometer as depicted in Figure 5.3. Asin any
interference experiment, it was important to keep the differencein path lengths as
constant as possible during each counting interval. For short counting times, this can
usualy be accomplished with passive stabilizing techniques such as minimizing air
currents, maintaining constant temperature, and eliminating sources of vibration or
decoupling from these sources. However, with our apertures (Figure 5.6) closed down
for better interference visihility, the low coincidence counting rate of 15/sec implied that
long counting times were necessary to acquire good statistics at each point. Under these
circumstances passive techniques were no longer sufficient.

To achieve better control over the fluctuations, we constructed the active locking
system shown in Figure D.1. The beam from a frequency-stabilized 5 mW HeNe laser
beam was expanded with a 10 cm focal length lens and injected into the unused port of
the Michelson interferometer at a small angle relative to the arms. Although the dichroic
mirror MD2 is coated for transmission in the red, a small fraction of the HeNe beam
was still diverted to mirror M2, from which it was reflected back through MD2. Most of
the incident HeNe light was transmitted through MD2 to M1, where it was reflected
back to MD2. Once again, most of this light passed through MD2, but a small fraction
was reflected. For aproper choice of the input beam'’ sincident angle, the two beams

displayed a set of vertical “tilt” fringes at the collection mirror M3. This mirror was
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Locking Circuit

e

PDC

Function
Generator

Figure D.1 Locking system for the 2-color Michel son interferometer. The HeNe beam
incident from the left forms a set of interference fringes which are imaged onto a pair of

photodiodes. The difference signd is integrated and used as a control input to the

piezoelectric driver. A change in the fringe position at the diodes resultsin a correcting

voltage at the piezoel ectric transducer (PZT).



204

placed just outside the path of the downconverted light, and reflected the HeNe fringes
onto acylindrical lens (that extended their widths to about 3 mm each. A typical fringe
pattern contained 8-10 fringes, for atotal pattern width of around 3 cm. The spot size
incident on the cylindrical lens was about 1 cm. Asthe path lengthsin the interferometer
changed, so too did the lateral positions of these fringes; the precise position of the
fringe pattern was used to create a position control signal which could be sent back to
the PZT to correct for the fluctuations.

The fringe pattern fell onto a pair of adjacent photodiodes, and the difference
between the outputs of these two photodiodes was amplified, integrated, and sent to the
PZT driver with the help of the locking circuit shown in Figure D.2. A difference signal
of “zero” occurred when afringe was centered exactly between the two diodes. If a
fluctuation caused the fringe to move, the difference signal would become more negative
or positive, which either added to or subtracted from the integrated position signal being
sent to the PZT driver. The PZT-mounted mirror M1 would move in response to this
increased signal, until it arrived at some new position which returned the HeNe fringe to
its centered position across the diodes, generating adifference signal of zero and
causing no further change to the position signal. In thisway, the PZT was continually
fed acontrol voltage of exactly the right amount so that the path length difference
remained “locked” to this stable point. For the experiment, the scansin 6 were
achieved by mounting the pair of photodiodes on atrandation stage under computer
control. Asthe diodes were trandlated to different positions across the fringe pattern, the
locking point was forced to move with them, so that the same fringe stayed centered on
the diodes at al times. This shift in the fringe position corresponded to a change in the
relative path lengths of the two interferometer arms. A diode trandation of one fringe

width (about 3 mm) corresponded to a change of path length difference by
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Aiene = 633 Nm; in practice, about 2 mm of trandation were needed to scan through the
405 nm period for 6.
D.2 Operational details

The photodiodes were provided with a+12 V bias supply from the locking
circuit, and each returned a current which was converted to a voltage using operational
amplifiersin a“trans-impedance” configuration. The gain for each diode could be
adjusted by varying the resistance of the negative feedback across the op-amps. The
signals were then subtracted, and a variable offset was added so that the difference
signal could be zeroed at the correct point, with afringe centered exactly on the diodes.

A difference signa of zero can be generated either by centering adark or a
bright fringe across the diodes. However, only one of these configurations returns an
error signal of the correct sign for negative feedback: the other generates a“ correction”
of the wrong sign, which further displaces the fringes away from the zero point. To
facilitate locking either to the bright or dark fringes, a polarity inverter wasincluded in
the locking circuit.

The next element in the circuit is the integrator. With the switch set so that the
difference signal V,, arrives at the inverting input of the op-amp, the output signal is
given by

-1
Vout(t) ===

= 0, At (t9 (D.2)

with the gain determined by the choices of R and C. The Fourier transform of this
relaion,:

V(@)= —=V, (@) = ¢

=1o=c v —V, (), (D.2)

1
oRC
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showsthat the gain isinfinite at DC, and falls off inversely with frequency as w ® ¥ .
The gainisunity at the “cutoff frequency”

1

0, = —
RC

(D.3)

The lower the values of R and C, the higher the gain will be at al frequencies, and the
faster the response of the integrator will be to changes in the input signal (higher cutoff
frequency) -- al desirable characteristics. However, in practice, we are forced to limit the
cutoff frequency to the value

2%
2 TR.T .

(D.4)

(‘0180 -

where T, isthetime required for asignal to make one round trip through the
electronic and optical system. Signals with this frequency will arrive back at the input
180 degrees out of phase from the output, a sign change which resultsin positive
feedback instead of negative feedback. If the net gain of the system is above unity for
this frequency, oscillations will result. In practice, the vaue of R was changed by
adjusting a potentiometer while monitoring the integrated error signal. R was set to the
lowest value that did not cause oscillations. Typically the value of R was around 1 MW,
when C was 10 nf.

Thefinal element in the locking circuit is an adder, which allowed control of the
PZT driver from an external source such as a function generator. This was used from
time to time during the alignment, to send a*“ramp” voltage to the PZT. The integrator
was turned off so that the circuit did not try to lock the position of the mirror whileit

was under external control.
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