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I am going to tell you what nature behaves like. If you will simply admit that maybe she

does behave like this, you will find her a delightful, entrancing thing. Do not keep

saying to yourself, if you can possibly avoid it, ‘But how can it be like that?’ because

you will get ‘down the drain,’ into a blind alley from which nobody has yet escaped.

--Richard Feynman, in

The Character of Physical Law
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Abstract

Two of the most celebrated and counterintuitive aspects of quantum theory --

complementarity and nonlocality -- are investigated in a series of five experiments which

use the entangled photon pairs generated via spontaneous parametric downconversion.

In the introduction, the complementary relationship between path

distinguishability and interference of photons is presented, followed by an historical

introduction to nonlocality, the EPR paradox, and Bell’s inequality. The entangled

quantum state for the signal and idler photons produced in the process of spontaneous

parametric downconversion is derived heuristically.

An experimental realization of a “quantum eraser” is then presented. When the

photon paths in a Mach-Zehnder interferometer are rendered distinguishable by

coupling to an auxiliary observable, interference vanishes as demanded by

complementarity. However, the experiment shows that if the auxiliary observable is

measured in such a way as to permanently destroy this “which-path” information,

interference reappears for two distinct subensembles of the photons. This shows that

interference need not vanish as a result of “uncontrollable disturbances” linked to the

uncertainty principle; it can be destroyed and revived solely on the basis of what

information is available, in principle, to the observer.

Next, the effect of spectral distinguishability on two-photon interference is

shown in a common-path fourth-order interferometer with type-II downconversion

pumped by ultrafast pulses. The loss of interference visibility due to spectral

distinguishability has important implications for future multi-particle interferometry

experiments, including GHZ demonstrations of nonlocality and quantum teleportation

schemes. The distinguishability is found to be related to the symmetry of the joint

emission amplitude spectrum for the signal and idler photons. This suggests a
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mechanism for full restoration of the interference which is successfully demonstrated in

the next chapter.

In the next experiment, the Clauser-Horne-Shimony-Holt form of Bell’s

inequality is shown to be violated by 29 standard deviations by measurements of

entangled photon pairs in the circular polarization basis. Possible reasons for the failure

of earlier attempts to violate a Bell inequality with circularly polarized light are

discussed.

Finally, the first experimental demonstration of the violation of local realism in

nature without the use of Bell inequalities (but with supplementary assumptions) is

presented.
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Chapter 1

Introduction

This thesis reports the results of five experiments which demonstrate

complementarity and nonlocality in quantum mechanics with optical techniques. Each

experiment made use of the correlated photon pairs produced in the process of

spontaneous parametric downconversion. In the following sections we introduce the

concepts of complementarity and nonlocality, and the process of parametric

downconversion.

1.1 Complementarity

1.1.1 The uncertainty principle and “which path” information

For any system described by quantum mechanics, it is possible to find certain

pairs of observables -- usually the quantum-mechanical counterparts of classical,

canonically conjugate quantities like momentum and position -- which cannot be

measured simultaneously to arbitrary precision. Such observables, denoted here as ˆ P 

and ˆ Q , are referred to as complementary, and they obey Heisenberg’s minimum

uncertainty relation,

  
ˆ P ⋅ ˆ Q ≥

h
2

. (1.1)
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This tells us that there is a fundamental limit to how well the values of ˆ P  and ˆ Q  can be

determined in the same measurement1. The standard interpretation of this state of

affairs, due to Bohr, is that the experimental arrangements required to measure

complementary observables are always physically incompatible, so that making a

precise measurement of one precludes making a precise measurement of the other [1].

The idea of complementarity may be extended to describe the wave/particle

duality exhibited by all quantum mechanical objects. Although electrons, photons, and

atoms all possess wave and particle properties, they never manifest both types of

behavior together. And, just as is the case for complementary observables, any

experimental arrangement designed to show one of these complementary attributes

necessarily hides the other. For example, if we have an experimental arrangement

designed to exhibit optical interference, such as Young’s double-slit apparatus (see

Figure 1.1), then the interference only appears in those cases in which it is impossible to

determine which path the photons traversed to reach the screen where they were

detected. The interference is taken to be a signature of wavelike behavior, while the

“which-path” information is understood to be a “particle” property for the photons.

1.1.2 Indistinguishable in principle, or in practice?

“Indistinguishability leads to interference” is the mantra that will be

encountered repeatedly throughout this work. It is a simple idea, but there are some

situations in which it is quite a subtle matter to determine whether or not the paths

leading to a given photodetection event really are indistinguishable or not.

                                                
1 The standard deviations ˆ P ≡ ˆ P − ˆ P ( ) 2 12

 and ˆ Q ≡ ˆ Q − ˆ Q ( ) 2 12

are statistical properties

related to an ensemble of measurements, but may also be interpreted as widths of probability
distrbutions for the outcome of any single measurements.
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Int ensity

Phase dif fer ence
betw een secondar y
waves

#  Photons/ unit ti me

B

C

D

Phase dif fer ence
bet ween photon path s
ABD and ACD

Figure 1.1 Young’s double-slit experiment is the classic starting-point for discussions

of wave/particle duality. To arrive at the detecting screen on the right, the light from the

source at the left must pass through a pair of slits cut into an absorbing material.

Classically, the light is described as an electromagnetic wave (a), so that secondary

waves emerge from the slits and create an interference pattern on the screen. Quantum-

mechanically, the light is described as a collection of photons, which cannot be split (b),

but the interference pattern is still manifest in the ensemble of point-like detections of

single photons at the screen so long as the paths ABD and ACD are indistinguishable.

(a)

(b)
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For example, suppose we are able to modify the two-slit apparatus so that a

marker of some kind is activated when the light passes through one or the other of the

two slits, without disturbing the paths of the photons that reached the screen (see Figure

1.2). Now the question arises, will the photons reaching the screen now show

interference or not? It is clear that if we choose to observe the markers in conjunction

with the arrival of photons at the screen, there is no interference, because we know

through which slit each photon passed on the way to the screen.

But what if we choose not to observe the markers? Is this enough to render the

photons at the screen “indistinguishable” from the point of view of the measurements,

so that the interference is displayed? The answer is no. As we will see from several

experiments reported in this thesis, it is not enough for the measurement apparatus to

simply ignore which-path information: whether interference occurs depends on whether

this information exists, and not on whether some other part of the apparatus is accessing

it. Paths for which no distinguishing information exists anywhere in the universe are

said to be indistinguishable in principle, and it is only events of this type that ultimately

exhibit interference.

Now suppose we that are to manipulate the markers in some way without

observing them, so that afterwards they are incapable of revealing through which slit a

given photon passed. Would the interference return at the screen in this case? It turns

out that the answer to this question depends critically on the way in which the markers

are manipulated. If they are manipulated so that they can never reveal which-path

information no matter what is done with them later, then the photons at the screen

become indistinguishable in principle, and interference returns.

If, on the other hand, the markers are manipulated so that the which-path

information is hidden only for a particular experimental arrangement, then this might
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A

# Photons/unit time

B

C

D

Phase difference
between photon paths
ABD and ACD

?
Figure 1.2 A thought-experiment in which the photons activate a “marker” as they pass

through the slits, so that the which-path information is available in principle.

Complementarity demands that the interference vanish in this case, but is there a way of

“erasing” the information so that interference returns?
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be said to make the paths for detection at the screen “indistinguishable in practice.”

Does interference return for these events as well? We will see in Chapter 2 that it is

indeed possible in this case to recover a limited kind of interference at the screen,

contingent on our apparatus actually observing the markers in a way that erases the

which-path information. In some sense, then, we will see that interference can occur

between paths that have been rendered “indistinguishable in practice” by the action of

the quantum eraser apparatus; not by ignoring the which-path information, but by

destroying it. Ultimately, though, this interference will be seen to come from double-

detection paths -- for the photons at the screen, and their corresponding markers --  that

are indistinguishable in principle.

1.1.3 Two-photon interference and spectral markers

In Young’s double-slit experiment, interference occurs between different

pathways leading to a final event that involves only a single photon: namely, the

detection of light at the screen. However, in nature there exist events that involve

emission or absorption of two photons, rather than one, such as atomic “cascade”

transitions, or nonlinear “three-wave mixing” processes. These events may also be

described by quantum mechanical probability amplitudes, and they are capable of

exhibiting interference so long as the photon paths leading to them are

indistinguishable. The “paths” under consideration may involve the multiple

trajectories for each photon participating in the event. In Chapter 3, we will encounter an

example of a two-photon interferometer, and observe the reduction in the two-photon

interference visibility that occurs when the photon pairs are rendered distinguishable by

their spectra. In Chapter 4, we will see that the interference returns when this “spectral
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marker” is removed, so that the two-photon paths become indistinguishable in

principle.

1.2 Nonlocality

1.2.1 The limits of quantum information

For any two operators ˆ A  and ˆ B  that do not commute, a more general form of

the uncertainty relation holds [2]:

ˆ A ⋅ ˆ B ≥
1

2
ˆ A , ˆ B [ ] . (1.2)

This equation implies that there is a fundamental limit on the accuracy with which the

values of ˆ A  and ˆ B  can be determined at the same time -- in a sense, there is a limit on

how much information may be specified by the quantum state.2 If two observables do

not commute, the quantum state cannot contain information which would specify the

outcome of measurements of both of them. Quantum mechanics, then, is unable to make

deterministic predictions of the outcomes of at least some measurements; it offers

probabilities instead of certainty. But is this a limitation of the theory, or is it a

necessary embodiment of limits in nature on what is knowable in principle? Could

quantum mechanics conceivably be replaced by a more detailed theory, one capable of

making deterministic predictions in all cases, or does it already reflect all there is to

know?

                                                
2  This limitation is built in to the formalism of quantum mechanics in the following way:  1.) the
outcome of a measurement of ˆ A  or ˆ B  can only be predicted with certainty when the quantum state of
the system is an eigenstate of ˆ A  or ˆ B  ;  2.) if ˆ A  and ˆ B  do not commute, there is no basis in which
both operators are diagonal -- that is, there can be no states which are eigenstates of both ˆ A  and ˆ B .
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1.2.2 The EPR Paradox

1.2.2.1 The EPR-Bohm thought experiment

In 1935, Einstein, Podolsky, and Rosen posed the question, “Can Quantum-

Mechanical Description of Physical Reality Be Considered Complete?” and concluded

that the answer is “no.”[3]. They arrived at this conclusion after considering the results

of a now-famous thought experiment that was later modified by Bohm [4]. As depicted

in Figure 1.3, the EPR-Bohm thought experiment begins with a single spin-zero particle

which is unstable and decays into two fermions. The new particles, A and B, fly away

from each other in opposite directions, towards separate observers, each of whom is

prepared to measure a component of the spin of the arriving particle with a suitably

oriented Stern-Gerlach analyzer. In modern parlance, “Alice” measures the projection

of particle A’s spin onto the unit vector a  -- represented by the operator ˆ 
A ⋅a  -- while

“Bob” measures a similar spin projection for particle B, ˆ 
B ⋅ b .3 

It is assumed that the total spin is conserved in the decay process, so that the

state of the system4 after the decay must be the spin-zero singlet state5

=
1

2
+ A ,n − B ,n − − A,n + B,n{ } , (1.3)

where n  is an arbitrary unit vector and we have introduced the notation

ˆ ⋅ n ± ,n = ±1 ± ,n      = A, B (1.4)

Eq. (1.4) implies that no matter how Alice and Bob choose to orient their analyzers, the

results of their spin measurements can only be ±1 . The state in (1.3) does not allow

                                                
3 Strictly speaking, the spin projection operators are   

ˆ S ⋅ n = h 2( ) ˆ ⋅n ; we will omit factors of   h 2 .
4 The complete state of the system would be a direct product of the spinor presented here and a
position/momentum state describing the spatial localization of the two particles. Because we are only
concerned with spin measurements here, the spatial part of the state is ignored.
5 The eigentstate of the total spin ˆ J = ˆ S 

A
+ ˆ S 

B
 with eigenvalue   

ˆ J 
2 = j j + 1( )h 2 = 0 is the singlet

state.
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+1

-1 -1

+1
j = 0

a by y

x

x

Alice Bob

Figure 1.3 The EPR-Bohm thought experiment. A spin-zero particle decays into two

fermions whose spin components are measured by Alice and Bob along directions a

and b. The outcome of either measurement may be +1 or -1, but the two results must be

opposite if Alice and Bob choose the same direction for their Stern-Gerlach

orientations.
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Alice or Bob to predict in advance which of these outcomes they will observe -- each

result will occur with 50% probability -- but it does guarantee that if both Alice and Bob

choose the same orientation for their analyzers, their results will be perfectly

anticorrelated. That is, if Alice and Bob agree to make a = b ≡ n , then on those

occasions when Alice happens to observe a spin value of ˆ 
A ⋅n = +1,  is

“collapsed” or projected and becomes

′ = + A, n − B ,n , (1.5)

which guarantees that Bob’s measurement will yield the opposite result, ˆ 
B ⋅ n = −1.

On the remaining occasions when Alice’s measurement yields -1, Bob’s must yield +1.

This anticorrelation holds no matter what direction Alice and Bob agree to choose for n,

because the state in (1.3) has the same form in any spin basis (n = x,y,z, etc. )6

This type of state, in which the spin components of each particle are

undetermined yet correlated with each other, is referred to as an entangled state. The

measured value of one particle’s spin is intimately tied to that of the other, even though

neither one has a definite value before measurement. The entanglement is a consequence

of the fact that the state for the two spins cannot be factored into a product of single-

particle spin states, so that the collapse of  for one degree of freedom affects the

other one as well.

1.2.2.2 Realism, locality, and the paradox

In their paper, Einstein, Podolsky and Rosen made the following assertion: “If,

without in any way disturbing a system, we can predict with certainty the value of a

physical quantity, then there exists an element of physical reality corresponding to this

                                                
6 The circular symmetry of the singlet state is no accident; it is the result of the rotational invariance
required for any angular momentum eigentstate to have eigenvalue j=0.
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physical quantity.” This statement defines a philosophical position known as objective

realism, or just realism. In this example, realism implies that at the instant Alice

measures, ˆ 
A ⋅n , the quantity ˆ 

B ⋅ n  becomes an element of physical reality which has

an objective, real existence in the natural world, whether or not Bob decides to measure

it; ˆ 
B ⋅ n  acquires this “objectively real” status by virtue of the fact that Alice can now

predict its value with certainty.

Now a paradox emerges when we consider two possible (but mutually

exclusive) measurements that Alice might perform: she might decide to measure ˆ 
A ⋅ x ,

obtaining a definite value for this quantity and ensuring that the corresponding quantity

for Bob’s particle, ˆ 
B ⋅ x , is an element of reality. On the other hand, Alice might decide

to measure ˆ 
A ⋅y  instead of ˆ 

A ⋅ x ; in this case, she would make ˆ 
B ⋅ y  an element of

reality instead.

But since the particles described by (1.3) can be arbitrarily far away from each

other, Alice should not be able to influence any of the properties of Bob’s particle. For

according to relativity, Alice’s analyzer cannot send an instantaneous signal to Bob’s

particle to “tell” it which value of ˆ 
B ⋅ x  or ˆ 

B ⋅ y  to adopt, or indeed, which of these

two quantities should become an element of reality. This means that if Bob and Alice

make their measurements simultaneously7, there is no way the results of one can affect

the other. The separate nature of the two measurements, insisted on by Einstein, is called

locality.

The EPR paradox, then, is this: no signal can travel faster than light, and yet

Alice is able to make either ˆ 
B ⋅ x  or ˆ 

B ⋅ y  into an element of reality for Bob’s particle

at will, instantaneously and from a distance. Einstein, Podolsky, and Rosen argued that

the only way to resolve this paradox is to accept that both the x and y spin components
                                                
7 The measurements must be made with spacelike separation, so that they cannot be connected by a
light signal.
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for each particle are actually elements of reality from the moment the particles are

created. In that case, each of the particles must possess definite values for ˆ ⋅ x  and

ˆ ⋅ y  all along, so that Alice and Bob merely uncover each of these predetermined spin

values when they make their measurements.8

However, in the quantum mechanical description of nature, ˆ ⋅ x and ˆ ⋅ y  are

complementary to each other: the operators do not commute9. As mentioned earlier, this

fact forbids any quantum state from specifying eigenvalues of both ˆ ⋅ x and ˆ ⋅ y  for

any particle. What this means, according to the EPR argument, is that quantum

mechanics cannot be a complete theory: the above paradox implies that in at least one

system, there exist elements of physical reality which quantum mechanics is unable to

include by its very design.

The implication of this argument is that the statistical character of quantum

mechanics arises from our ignorance of nature, and not from limitations of nature itself.

Einstein wrote that it must remain for physicists to complete quantum mechanics with a

deeper theory, in the same sense that thermodynamics is completed via classical

mechanics. The more complete theory would rely on physical quantities which are

currently unknown to us, analogous to the individual atomic positions and momenta

whose average properties are described by statistical mechanics: the description of these

“hidden variables” would then permit a return to a completely deterministic theory [5].

                                                
8 If this interpretation were correct, the situation would be no more “paradoxical” than the following:
Alice and Bob decide to cut a coin in half along its thin edge, with the result that one of the pieces is
“heads” and the other is “tails.” Without looking to see which is which, they each take a piece of the
coin and walk away from each other. At some later time, Alice decides to look at her half of the coin,
and discovers which piece she has been carrying all along. She now knows which piece Bob is
carrying, as well, without the need for any “spooky action at a distance,” in the words of Einstein.
They can carry out this procedure for two coins, corresponding to the two different anticorrelated
elements of reality for each observer.
9 The pauli matrices satisfy ⋅x , ⋅y[ ] = 2 i ⋅ z , so that the spins satisfy the angular momentum

commutation relations   S ⋅ x,S ⋅y[ ] = ihS ⋅ z  and cyclic permutations therof.
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1.2.2.3 Bohr’s reply

In essence, the EPR argument presents a contradiction between the following

four statements: There exist in nature elements of physical reality as defined by realism;

Nature is constrained by locality; Quantum mechanics is a correct description of

nature10; Quantum mechanics is a complete description of nature. Unwilling to deny the

first three statements, the authors concluded that the fourth one is false.

In his earliest reply to the EPR argument [7], Bohr defended the fourth

statement and argued against the first. He wrote that the EPR definition of an “element

of reality” is an ambiguous one, derived from “a priori philosophical considerations”

rather than being “founded on a direct appeal to experiments and measurements.”

According to Bohr, we should regard as real only those things which we are in a

position to measure, and because certain types of measurements preclude us from

making others, it is only right that quantum theory reflect the mutually exclusive nature

of such complementary sets of measurements.

From Bohr’s point of view, the flaw in the EPR argument is the use of

counterfactual reasoning, in which the results of different possible, but mutually

exclusive, measurements by Alice are used together as elements of a logical argument. A

modern statement of this view is that “unperformed experiments have no results,” [8]

and it is not necessary for a physical theory to explain them in order to be considered

complete.

                                                
10 Strictly speaking, the EPR argument only requires that quantum mechanics give correct predictions
for the thought-experiment under consideration [6].
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1.2.3 Bell’s inequality

1.2.3.1 Bell’s theorem

Whatever the criticisms of Einstein’s position, it remained a tenable one until

1964. In that year, J.S. Bell proved that it is impossible to reproduce all of the

predictions of quantum mechanics using any “hidden variable” theory that

incorporates locality and realism as axioms [9].

To prove this, Bell returned to the EPR-Bohm thought experiment and

considered the correlations between Alice’s and Bob’s measurements not just for the

particular analyzer orientations n = x,y , but for the general case in which they are free

to choose any orientations. Because the outcomes of their measurements can only be

+1 or -1, with a 50% chance of finding each value11, their mutual correlation function is

equivalent to their joint expectation value:

Q ≡
∆A∆B

∆A( )2 ∆B( )2
=

AB − A B

A2 − A 2 B2 − B 2
= AB (1.6)

when the variables are A = ±1 and B = ±1  and represent the outcome of any one of

Alice and Bob’s spin measurements, and the brackets denote ensemble averages. In the

most general formulation of a “local hidden variable” (LHV) theory, the outcome of

each measurement may depend on the particular values of some hidden variables,

collectively denoted by λ, and on the orientation of the analyzer, a  or b ; the expectation

value on the far right in Eq. (1.6) is then given by

Q a,b( ) = A a,( )B b,( ) ≡ ( )∫ A a,( )B b,( )d (1.7)

where the distribution of values for the hidden variables among all the various decay

events is governed by the probability density ( ) . Note that the outcome of each

                                                
11 These are empirical facts which are predicted by quantum theory, but do not rely upon it.
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observer’s measurement is not permitted to depend on the orientation of the other’s

analyzer; this is how locality is directly built in to the theory. On the other hand, A and B

may both depend on the values of λ, which are determined at the source.

Bell considered measurements for two possible orientations of Alice’s analyzer,

a,  ′ a ( )  and of Bob’s analyzer b,  ′ b ( ) , and showed that the following inequality must

hold if the correlations between them are given by (1.7):

Q a,b( ) − Q a, ′ b ( ) + Q ′ a ,b( ) + Q ′ a , ′ b ( ) ≤ 2 (1.8)

This is a form of Bell’s inequality12 , and the statement that all correlations predicted by

LHV theories must satisfy it is Bell’s theorem. Note that Bell’s inequality is not a

statement about quantum mechanics: it is a statement about LHV theories intended to

“complete” quantum mechanics.

Remarkably, the correlations predicted by quantum mechanics are able to violate

this inequality13. The quantum mechanical expression for the mutual correlation

between Alice’s and Bob’s measurements is

QQM a,b( ) = A ⋅a( ) B ⋅b( ) (1.9)

Evaluated with the singlet state14 in (1.3), this becomes

QQM a,b( ) = −a ⋅b , (1.10)

and the four unit vectors may be chosen15 so that

QQM a,b( ) − QQM a, ′ b ( ) + QQM ′ a ,b( ) + QQM ′ a , ′ b ( ) = 2 2 , (1.11)

                                                
12 This form of the inequality (not the original) is derived by Bell in reference [10]
13 This fact seems less remarkable if we notice that of the four quantities involved in (1.8), only one
may be measured by Alice and Bob at a time; Bell’s inequality therefore involves counterfactual
reasoning, which is permitted for classical observables, for EPR “elements of reality,” and for the
variables A  and B, but not for quantum-mechanical observables.
14 It is not necessary that the spins be in the singlet state in order to violate Bell’s inequality, but it is
necessary that their state be an entangled one. See, for example, reference [11].
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in clear violation of (1.8). According to Bell’s theorem, no LHV theory can reproduce

this prediction, which means that it is impossible to complete quantum mechanics in the

manner envisioned by Einstein. The inconsistency of quantum mechanics with locality

and realism is often referred to as the nonlocality of quantum mechanics. But is nature

nonlocal as well?

1.2.3.2 Experimental violations of Bell’s inequality

The fact that quantum mechanics violates Bell’s inequality implies a

contradiction between the following three statements, all of which were assumed true in

the EPR argument: There exist in nature elements of physical reality as defined by

realism; Nature is constrained by locality; Quantum mechanics is a correct description

of nature.

Of course, it is possible that quantum mechanics is simply wrong in cases where

it predicts nonlocal behavior by the failure to satisfy (1.8). Then quantum mechanics

could be regarded as an (incorrect) approximation to some LHV theory which, in

addition to being more complete, would also be more accurate than quantum mechanics.

If, on the other hand, the quantum-mechanical prediction (1.11) could be verified -- that

is, if nature could be seen to violate Bell’s inequality -- then this would rule out any

LHV theory as an accurate description of nature, however intuitively satisfying it might

be.

The first proposal for an experimental test of Bell’s inequality was made in

1969 by Clauser, Horne, Shimony, and Holt [12]. They derived a version of Bell’s

                                                                                                                                          
15 One suitable choice is a = x, ′ a = y, b = x + y( ) 2 , ′ b = x − y( ) 2
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inequality that could be tested by making polarization measurements on pairs of

photons16 emitted in atomic “cascade” decays. This inequality has the form

R a,b( ) − R a, ′ b ( ) + R ′ a ,b( ) + R ′ a , ′ b ( ) − R ′ a , −( ) − R −,b( ) ≤ 0 (1.12)

where R a,b( )  refers to a measured joint counting rate for two photodetectors positioned

behind polarizers oriented along directions a  and b , or with a polarizer removed as

denoted by the dash (-). Unlike (1.8), the CHSH inequality can be tested with practical,

inefficient photodetectors, but it requires that an additional “fair sampling” assumption

be made, so that the subensemble of detected photons is representative of the whole

ensemble of emitted photon pairs. To date, numerous experimental violations of the

CHSH inequality have been observed. The most striking of these was an atomic cascade

experiment conducted in 1982 by Aspect, Dalibard, and Roger [13], in which the

orientations of Alice’s and Bob’s analyzers were changed in a pseudo-random fashion

after the photons were emitted, but before they impinged onto the polarizers. This

experimental arrangement was designed to guarantee the spacelike separation of the

measurements and to ensure that Einstein’s locality condition applied to them17.

It would seem, then, that the predictions of quantum mechanics have been

vindicated, so that we are forced to accept that nature behaves in direct contradiction to

the EPR assumptions of locality and realism. However, staunch advocates of LHV

theories18 continue to point out that, to date, there have been no experimental violations

                                                
16 The original EPR-Bohm thought experiment involved spin measurements of correlated fermions.
Although photons are bosons, their polarization states may be described with a spin-1/2 algebra
because only two orthogonal polariations exist which are transverse to the direction of propagation.
17Whether or not they completely succeeded seems open to debate, since the “random” setting of the
analyzer encountered by each photon was determined by a periodic switching signal emanating from
within the backward light cones of the two detection events [14,15].
18 See, for example, reference [16]
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of Bell’s inequality in its original form19: only the CHSH inequality, with its fair-

sampling assumption, has been shown to be inconsistent with nature. Therefore, what

these experiments actually tell us is that not all three of the following statements can be

true: There exist in nature elements of physical reality as defined by realism; Nature is

constrained by locality; The fair sampling assumption is valid. Because of this

“loophole,” it is possible to construct alternative theories to quantum mechanics that

are consistent with locality and realism and with all existing experimental data, so long

as they violate the fair sampling assumption. Such theories must remain open as logical

possibilities until a “loophole-free” experiment is able to demonstrate violations of the

Bell inequality (1.8) without additional assumptions.

1.2.3.3 Experimental non-violations of Bell’s inequality?

The CHSH inequality applies to rotationally invariant systems like the one

presented in the EPR-Bohm thought experiment. This inequality, and the predictions of

quantum mechanics, should have the same form even if circular, rather than linear,

polarizations are measured by Alice and Bob. Despite this, there are two known cases in

which attempts to show violations of the CHSH inequality by measurements in a

circular polarization basis have failed. A modern version of these experiments which

succeeded is presented in Chapter 5.

1.2.4 Beyond Bell’s inequality

For twenty-five years, Bell’s inequality reigned as the standard expression of

the conflict between quantum mechanics and the EPR axioms of locality and realism.

                                                
19 The original form of Bell’s inequality presented in (1.8) is sometimes referred to as the “strong” Bell
inequality, while those forms that include additional assumptions, such as the CHSH inequality in
(1.12), are called “weak” Bell inequalities.
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But in 1989, an even more striking way of demonstrating this incompatibility was

discovered by Greenberger, Horne, and Zeilinger20. The GHZ thought-experiment

involves spin measurements on three spin-correlated particles, instead of just two, and it

shows that quantum mechanics is inconsistent with local-realism based on the results of

a single measurement, without the use of inequalities. So far, there has been no

experimental realization of this experiment for lack of a suitable three-particle source;

the experiment may be feasible if the emissions from several parametric

downconversion processes (see Section 1.3) could be synchronized, and this is part of

the motivation for the experiments described in Chapters 3 and 4.

In 1993, Hardy devised another thought-experiment that demonstrates the

nonlocality of quantum mechanics without the use of inequalities [18]. Hardy’s

approach, as adapted later by Jordan to spin- 1
2  systems, was to return to the two-particle

EPR-Bohm thought experiment and consider entangled states which do not possess the

circular symmetry of the one given in Eq. (1.3). It turns out that for these asymmetric

states it is possible to formulate a set of four logical statements about the outcomes of

Alice and Bob’s measurements, each of which may be independently verified by

quantum mechanics and by direct measurement, but which create a logical contradiction

when considered together. As with Bell’s inequality, the GHZ experiment, and the EPR

paradox, this conundrum arises from the use of counterfactual reasoning about the

outcomes of mutually exclusive experimental arrangements -- reasoning which is valid

from a local-realistic point of view, but which may not be valid for quantum mechanics.

The Hardy-Jordan propositions are presented explicitly in Chapter 6, along with the

results of the first experimental test of these propositions.

                                                
20 A simplified form of the GHZ argument is presented in refernce [17]
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1.3 Spontaneous parametric downconversion

1.3.1 Overview

Parametric downconversion is a three-wave mixing process in which an

incident electromagnetic field oscillating at the pump frequency drives the electrons in a

dielectric medium to radiate energy at two lower frequencies: the so-called signal and

idler frequencies (see Figure 1.4). The process can occur in materials whose induced

polarization depends nonlinearly on the strength of the incident electric field; this

nonlinear response is a consequence of the anharmonicity of the potential wells for the

bound electrons in these media. In particular, certain noncentrosymmetric crystals may

have a strong second-order nonlinear electric susceptibility 2( ), which gives rise to an

induced polarization of the form

P 2( ) r,t( ) = 2( )E r,t( )E r ,t( ) . (1.13)

This is a tensor relation describing only the second-order nonlinear part of the induced

polarization within the dielectric material. The nonlinear coupling is quite weak even for

the most strongly nonlinear materials, but if a laser is used to supply a highly intense

pump field, the effects can become significant.

The process is parametric in the sense that the atoms in the nonlinear medium

play the role of spectators, and do not undergo state transitions during the mixing. As

such, they do not exchange any energy or momentum with the fields, so that the fields

themselves form a closed system in which energy and momentum must be conserved.

For traveling planewave pump, signal, and idler fields, these energy and momentum

constraints are expressed as the phase-matching conditions:

p = s + e (1.14)

and
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Figure 1.4 Parametric downconversion occurs in a nonlinear medium whose induced

polarization is proportional to the square of the electric field. The pump field drives

oscillations at two lower frequencies, creating signal and idler beams which emerge

from the crystal in different directions.
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kp = k s + k i . (1.15)

Classically, the downconversion process can only occur when there is initially

radiation in the signal or idler mode, along with the pump. In this case, the result is an

amplification of the signal and a corresponding attenuation of the pump, with the excess

energy radiated into the idler beam. This process is known as parametric amplification,

and it can exhibit gain over a large range of signal and idler wavelengths. It forms the

basis for highly tunable optical parametric amplifier (OPA) and oscillator (OPO)

devices.

Quantum mechanically, the parametric amplification process may be viewed as

stimulated parametric downconversion, in which a pump photon is absorbed and then

excites an electron in the medium to a higher-energy “virtual” level (see Figure 1.5).

The incident signal photon then stimulates a transition down to an intermediate virtual

level, accompanied by the coherent emission of a second photon at the signal frequency.

This emission is immediately followed by a decay back down to the ground state,

accompanied by the emission of a photon at the idler frequency.

However, unlike the classical model, the quantum mechanical description of this

process also allows for spontaneous emission to occur here, so that the pump photon

may decay into a pair of signal and idler photons even in the absence of an incident

signal field. This process of spontaneous parametric downconversion is often viewed

as an amplification of the vacuum field, in the sense that spontaneous transitions from

the excited virtual state are thought of as being stimulated by vacuum fluctuations in the

signal mode, which are equally likely to occur at all frequencies. The phase-matching

conditions ensure that the emerging photons are correlated in momentum and energy,

even though these attributes are not defined for either photon until a measurement is

performed on one of them. This entanglement, along with the fact that the photons are
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Figure 1.5 Parametric downconversion may be seen as the annihilation of a pump

photon, with an accompanying transition within the material to an excited “virtual”

level, followed by a decay back to the initial state and emission of the lower-frequency

signal and idler photons.
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emitted simultaneously within the coherence time, means that the photons produced in

this process are capable of exhibiting nonclassical behavior in a variety of ways. The

process of spontaneous parametric downconversion is the starting point of all the

experiments described in this thesis.

1.3.2 The quantum state

A simplified description21 of spontaneous parametric downconversion begins

with an interaction Hamiltonian that specifies the creation of a signal photon and an

idler photon along with the simultaneous annihilation of a pump photon [19]:

  
ˆ H I = hg ˆ a s

†ˆ a i
† ˆ a p + h.c. (1.16)

Here ˆ a s
†  and ˆ a i

†  are the creation operators for the signal and idler field modes, while ˆ a p

is the annihilation operator for the pump field mode, g is a coupling constant, and

“h.c.” represents the Hermitian conjugate of the first term (see Appendix A). For this

simple description, the pump, signal, and idler modes are assumed to be infinite

planewaves satisfying the phase-matching conditions (1.14) and (1.15).

In the interaction picture, the state of the system evolves according to

  
t( ) = exp

1

ih
ˆ H I ′ t ( )d ′ t 

0

t

∫ 
  

 
  (0) (1.17)

where 0( )  is the initial state of the system. When the pump field is supplied by a cw

laser, this state is

0( ) = 0 s 0 i V0 p
(1.18)

                                                
21 Detailed derivations of the quantum state for spontaneous parametric downconversion under various
pumping conditions are presented in Appendices A and B.
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where the signal and idler modes are initially empty, and the pump field is well-

approximated by a coherent state with mean photon number V0

2
. With the help of

(1.18) and (1.16), the unitary operation in (1.17) may be carried out and truncated to the

lowest nonvanishing order in g. The result is

= vac + 1 s 1 i (1.19)

where we have omitted the Hilbert space for the pump field, and included only the signal

and idler modes, so that vac ≡ 0 s 0 i . Here   is a creation efficiency parameter

proportional to g and V0  that satisfies the weak interaction condition

2 << 1. (1.20)

Hence, the probability for a pair of photons to be created in the signal and idler modes

is small, but non-zero. More rigorously, the state in (1.19) is shown to be the single

mode limit of a multimode superposition state in Appendix A.

1.3.3 Type-I and type-II phase matching

The phase-matching conditions (1.14) and (1.15) may be combined to give the

following constraint for the refractive index of the medium:

n p( ) s + n p( ) i = n s( ) s + n i( ) i . (1.21)

Because n is a monotonically increasing function over the optical range of frequencies,

this equation cannot be satisfied if the same refractive index applies to the pump, signal

and idler fields. However, if the nonlinear medium is birefringent, so that the index for

the pump field is lower than the index for at least one of the downconverted fields,

(1.21) may be satisfied. The two ways of achieving this in practice are labeled as “type-

I” and “type-II” downconversions.
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In type-I downconversion, the signal and idler fields have the same polarization,

while the pump field is polarized orthogonally to them. For materials such as crystalline

LiIO3 and BBO which possess “negative uniaxial” symmetry, the index of refraction

for the extraordinary (e) polarization is lower than that for the ordinary (o) polarization.

The signal and idler beams are therefore o-polarized, while the pump is e-polarized. The

phase-matching condition is satisfied when

ne p( ) s + ne p( ) i = no s( ) s + no i( ) i . (1.22)

In type-II downconversion, the signal and idler fields possess orthogonal

polarizations, and the pump is again polarized to experience the lower of the two

refractive indices. For negative uniaxial crystals, the pump is again e-polarized, while the

signal is o-polarized and the idler is e-polarized, so that

ne p( ) s + ne p( ) i = no s( ) s + ne i( ) i . (1.23)

Both types of downconversion are commonly used. For some interferometric

experiments, however, type-II downconversion offers a practical advantage: because the

signal and idler photons are orthogonally polarized, it is possible to construct

interferometers in which the photons propagate collinearly and are separated by their

polarizations before being detected (see Figure B.1 in Appendix B). Such “common-

path” interferometers are much more stable than those with separate paths, since any

drifts or vibrations of optical elements are experienced by both photons together.

1.3.4 Cw and pulsed pump sources

The pump field for the downconversion process is usually supplied by a narrow

linewidth, cw laser, as treated in Section 1.3.2. However, the use of a broadband pulse as

the pump source has become more common in recent years, because it offers the
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possibility of synchronizing the emissions from multiple downconversion processes.

This synchronization has proved useful in quantum teleportation experiments [20,21],

and it is also a crucial step towards the realization of the GHZ nonlocality experiment

mentioned in Section 1.2.4. The combination of a pulsed pump with a type-II

downconversion source may seem optimal for the latter, as it would combine the

advantages of synchronization and common-path interferometry. But, as shown in

Chapter 3, this combination results in signal and idler photon pairs which are spectrally

distinguishable from each other, a side-effect which threatens to destroy any quantum

interference effects they might otherwise display. A solution to this problem is

presented in Chapter 4.

1.4 Methods, notation and terminology

1.4.1 Using the interaction picture to describe monochromatic fields

Throughout this thesis, we will use the interaction picture for the theoretical

treatment of the experiments. In addition, we will often find it convenient to disregard

the broad spectrum of the signal and idler fields and to represent each of them by a

monochromatic plane wave as in Section 1.3.2. In this “two-mode” limit, the signal and

idler modes have infinite length, and even extend to regions of space behind the

downconversion crystals. Since the signal and idler photons are excitations of these

infinitely long modes, it is possible to obtain some unphysical results in this limit for

certain experimental configurations. In particular, if the modes from two

downconverters are combined at a beamsplitter without careful attention to the input-

output relations, the two-mode theory in the interaction picture can produce nonzero

probabilities for the photons to be localized behind the downconverters [22]. These

unphysical results vanish when the multimode treatment of the process presented in
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Appendix A is used, because timing constraints for the creation of the photon

wavepackets are then automatically imposed.

When applied to the detection of photons after the downconverters, however, the

two-mode interaction picture agrees with the monochromatic limits of the multimode

theory, and offers the simplest analysis possible. In this thesis, care has been taken not

to push the two-mode theory beyond this domain of validity.

1.4.2 Notation for the Hilbert space norm

In the ensuing chapters, we will frequently encounter expectations of the form

ˆ O † ˆ O = ˆ O 
2

, (1.24)

where ˆ O † ˆ O represents a normally-ordered collection of number operators for the various

fields being detected. The notation on the right-hand side of this equation is meant to

imply multiplication of ˆ O  by its Hermitian conjugate ˆ O † .

1.4.3 Photons

Like most researchers, this author does not have a license to use the word

“photon” as apparently issued by one W.E. Lamb, Jr. at the 1960 Rochester

Conference on Coherence and Quantum Optics [23], having been born too late to

qualify. Nevertheless, the term will be used freely -- though not ambiguously --

throughout this work to refer to a single quantum excitation of some normal mode of

the electromagnetic field. The modes need not be monochromatic; in fact, the broad

spectral widths of some of these modes are central to Chapters 3 and 4. The photons in

those modes are represented by pure superposition states of single excitations over the

range of possible frequencies, and, as such, each of them can be said to possess the
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entire spectrum of the mode [24]. Likewise, the word “photon” does not automatically

imply spatially or temporally localized particles, though it will be used most often in

conjunction with photodetection events that occur within very short times.
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Chapter 2

The Quantum Eraser

2.1 Introduction

2.1.1 Complementarity without the uncertainty principle?

For any events in nature which could have occured via many distinct pathways,

complementarity demands that if “which-path” information is made available, then it

must always be at the cost of interference. But what is the mechanism that makes this

interference disappear? From the earliest days of quantum theory, the uncertainty

principle has appeared at the heart of discussions about complementarity. The more

famous among these discussions are based on ingenious thought experiments which

illustrate the consequences of trying to observe wave and particle behavior in a system at

the same time, and show how the uncertainty principle ultimately provides a

“measurement back-action” of some sort which has the effect of blurring the

interference fringes. The two most well-known examples are Einstein’s recoiling

double-slit apparatus and Feynman’s light microscope, depicted in Figure 2.1; both are

variations of Young’s double-slit apparatus. In Einstein’s version (a), the slits are

mounted on springs which allow them to recoil from the impact of photons colliding

with them en route to the screen. The momentum of this recoil can be measured and

used to determine which of the two slits a given photon passed through, without

blocking either path to the detection screen. In Feynman’s version (b), the interfering

particles are electrons which are illuminated by a very weak light source just after

passing through the slits. The scattered light may be observed independently and used
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light
source

(a)

(b)

Figure 2.1 (a) Einstein’s recoiling slit variation on Young’s double-slit experiment. A

photon en route to the screen collides with either the upper or the lower slit, imparting a

momentum kick which can identify the photon’s path. (b) Feynman’s light microscope

variation, in which a weak light source illuminates the electrons just after they emerge

from the slits. By detecting the photons in conjunction with the electrons, we can

determine which slit each electron traversed. In both experiments, however, the

uncertainty principle guarantees that if the measurements are sensitive enough to

determine “which-path” information, they will also result in an unavoidable “back-

action” on the interfering particles that is large enough to blur the interference pattern,

thereby eliminating wave-like behavior.

electron
    gun

light
source
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to determine which of the two slits a given electron passed through, again without

blocking either path to the screen.

In both scenarios it can be shown that the act of obtaining this “which path”

information disturbs the interfering photons or electrons to such a degree that the

interference fringes are lost. This occurs because both Einstein’s recoiling slits and

Feynman’s illuminating photons must be treated quantum mechanically. In the case of

the recoiling slits, one must determine their initial momentum precisely enough that a

change in momentum due to the collision with a photon may be detected. Heisenberg’s

uncertainty relation for momentum and position then imposes a lower bound on how

well-defined the position of the slits may be, which is equal to the spacing of the fringes

themselves [1]. Similar arguments reveal that the photons Feynman might have used to

identify the electron paths must exchange an uncertain amount of momentum with the

electrons, thereby deflecting them on their way to the screen and smearing out the

interference pattern  [2,3]. Thus, in the foregoing cases, the uncertainty principle acts to

enforce complementarity by ensuring that if “which path” information is obtained, the

wave behavior will be destroyed.

These examples illustrate the traditional way in which complementarity has been

understood to apply to wave-particle duality -- always, it seems, this kind of

complementarity is “protected” by the uncertainty principle, in the same way that

attempts to simultaneously measure complementary observables must always fail due to

the inevitable back-action onto the system from the measuring device [4]. But must

complementarity always follow from the uncertainty principle? Remarkably, the answer

is “no.” We will see, in this chapter, an experiment which demonstrates wave/particle

complementarity as a fundamental phenomenon, without using the uncertainty principle

in any way.
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2.1.2 “Which path” information in the Mach-Zehnder interferometer

It has been shown quite generally that in any optical interference experiment, the

visibility of the interference fringes is equal to the degree of intrinsic indistinguishability

of the photon paths [5]. If the paths can be made distinguishable in principle somehow,

then interference must vanish as a result, even if the distinguishing information is never

recorded. To demonstrate this type of complementarity without invoking the uncertainty

principle requires some means of identifying the paths of the interfering particles that

does not disturb their motion.

Let us consider a photon which is allowed to take two different paths on its way

to a detector1, as in the Mach-Zehnder interferometer shown in Figure 2.2 (a). Just

before the light is recombined at the final beamsplitter, its state is the superposition of

two Fock states

  
l =

1

2
ei 1 1 1 + ei 2 1 2{ } (2.1)

where the subscript 1 is a label for the mode of the upper path, and 2 denotes the mode

for the lower path. The phases 1 and 2  are equal to 1 and 2 , respectively, where

c 1  and c 2  are the optical lengths of the upper and lower paths from the initial

beamsplitter to the final beamsplitter. The light which emerges and is subsequently

detected is described by the annihilation operator

ˆ a =
1

2
i ˆ a 1 + ˆ a 2( ) . (2.2)

Over many trials, the average number of detected photons at the output will be given by

the expectation

                                                
1 The following discussion is adapted from reference [6], in which the interfering particles were atoms.
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∆S∆S

1

2

Figure 2.2  (a) A Mach-Zehnder interferometer. Light is incident on the beamsplitter

from the left, and may take path 1 or path 2 to the output beamsplitter, where it is

recombined. A photodetector monitors one of the output ports of the beamsplitter. As

the phase difference between path 1 and path 2 is altered via small displacements of the

final beamsplitter (∆S), the photon counting rate exhibits interference modulation. This

modulation occurs even if the incident light beam is weak enough that only one photon

is in the interferometer at a time. (b) The same interferometer, but with the light in each

path coupled to an external observable with distinguishable eigenstates A M  and B M .

Interference vanishes as a result of the distinguishability of the interfering paths.

(a)

∆S∆S
A

B

1

2

(b)
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ˆ n = ˆ a l

2
=

1

2
iei 1 vac + ei 2 vac{ }

2

=
1

2
1+ sin 2 − 1( )( ) (2.3)

which exhibits interference.

Now suppose that before the light is recombined at the output beamsplitter, it is

coupled to another system that can be found in one of two orthogonal states, A M  and

B M , which are nondegenerate eigenstates of some observable ˆ O , as in Figure 2.2 (b).

The precise nature of the coupling is unimportant so long as it has the form

1
1

interaction →    1
1

A
M

1
2

interaction →    1
2

B
M

.
(2.4)

We note two important features here: first, these relations indicate that the final state of

the auxiliary system is completely determined by which path the photon takes through

the interferometer;  second, because the auxiliary states A M  and B M  are orthogonal,

they may in principle be distinguished from one another in a single measurement of ˆ O 

by their eigenvalues. Therefore, a single measurement of observable ˆ O  would constitute

a determination of “which path” information for each photon in the interferometer..

Because of the interaction specified in (2.4), the initial state of the system must

now be amended to include states for the measuring apparatus as well as for the light.

The new state may be written in the larger Hilbert space as

  
lM

=
1

2
ei 1 1 1 A M + ei 2 1 2 B M{ } . (2.5)

This state is entangled, since it cannot be written as a product of two states in distinct

Hilbert spaces for the light and the measuring apparatus. If we now calculate the

number of photons arriving at the detector, averaged over many trials, we obtain

  
ˆ n = ˆ a lM

2
=

1

2
iei 1 vac A M + ei 2 vac B M{ }

2

=
1

2
. (2.6)
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There is no interference here; the terms which would have displayed a dependence on

the phase difference 2 − 1( )  have vanished due to the orthogonality of the states A M

and B M . As noted earlier, this orthogonality is the very property which allows the path

of the photon to be unambiguously identified in a single measurement of ˆ O . This

means that the wave behavior is destroyed here not as a result of the uncertainty

principle, but due to the presence of “which path” information within the measuring

apparatus. Note that the interference disappears even if no measurements are actually

made on the auxiliary system: the mere fact that the “which path” information exists is

enough to eliminate the interference.

2.1.3 Erasing “which-path” information

In view of the more traditional approaches to complementarity, one might

suspect that somewhere in the physical details of the coupling between the

interferometer and the measuring apparatus, an uncontrollable disturbance is acting to

destroy the interference. But this is not the case, for it is possible to regain interference

while leaving the coupling between the two systems intact. All that is required, according

to complementarity, is that the photon paths be made indistinguishable again. This

implies that the “which path” information stored in the measuring system must be

“erased” somehow, so that even in principle it can never be accessed. As Scully and

Druhl first pointed out, all of this can be done without invoking the uncertainty

principle, and without altering the paths of the interfering particles [7].

Suppose that instead of measuring ˆ O  on the remote apparatus, we choose to

measure another observable, ˆ ′ O , with eigenstates ′ A 
M

 and ′ B 
M

 which are given by

the linear combinations
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′ A 
M

=
1

2
A M + B M{ }

′ B 
M

=
1

2
A M − B M{ }.

(2.7)

No matter what state the measuring device was in initially, if the observable ˆ ′ O  is

measured, the system must be found in one of the two states above. Note that these

states do not give “which path” information for the photons. In fact, once the system is

in either of the ˆ ′ O  eigenstates, it is equally likely that a subsequent measurement of ˆ O 

will put the system into state A M  or B M , regardless of what the photons are doing.

Thus, by measuring ˆ ′ O  before a measurement of ˆ O  can be made, the “which path”

information can be destroyed forever (see Figure 2.3).

To show this more clearly, we first rewrite the quantum state of the system in the

form

  
lM

=
1

2

1

2
ei 1 1 1 + ei 2 1 2( ) ′ A 

M
+

1

2
ei 1 1 1 − ei 2 1 2( ) ′ B 

M

 
 
 

 
 
 

. (2.8)

This state is identical to the one given in (2.5), but we can see more clearly from this

expression for it that if the measuring apparatus is found in state ′ A 
M

, the light will be

found in the superposition state

  
l
S =

1

2
ei 1 1 1 + ei 2 1 2{ } . (2.9)

This is the state originally presented in Eq. (2.1), before the light was entangled with the

measuring apparatus. This state is capable of exhibiting interference, as is seen by

computing the expected number of photons at the output beamsplitter:

  
ˆ n =

1

2
ˆ a 

l

s 2

=
1

2

1

2
iei 1 vac + ei 2 vac{ }

2

=
1

4
1 + sin 2 − 1( )( ) . (2.10)
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∆S∆S
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A+B

A-B

1

2

Figure 2.3 The quantum eraser. If the external observable is detected in the basis

A B A BM M M M+ −{ };  , the “which-path” information is irrevocably destroyed,

and interference returns for each subensemble of the photocounts that is correlated with

such measurements.
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The projection of the initial state onto   l
S
 is contingent upon a measurement of ˆ ′ O 

being performed and yielding the eigenvalue for the state ′ A 
M

. Thus, in order to see

the fringes, we must make repeated joint measurements of both the light and the

measuring apparatus, selecting only those events for which the measuring apparatus is

in state ′ A 
M

. The subensemble selected in this manner will contain half of the total

events; this is the origin of the extra factor of 1 2 in the preceding equation.

Similarly, whenever the measuring apparatus is found to be in the state ′ B 
M

,

the light will be in the antisymmetric superposition state

  
l
A =

1

2
ei 1 1 1 − ei 2 1 2{ } , (2.11)

Here again we have interference, according to

  
ˆ n =

1

2
ˆ a 

l

A 2

=
1

2

1

2
iei 1 vac − ei 2 vac{ }

2

=
1

4
1 −sin 2 − 1( )( ) . (2.12)

This interference will only be observed when the measuring apparatus is in state ′ B 
M

rather than ′ A 
M

. This second subensemble therefore contains all of the

photodetections that were missing from the first.

The interference fringes described by (2.12) are exactly 180 degrees out of

phase with those described by (2.10), and are therefore referred to as “antifringes.”2 If

we do not select a subensemble of the photodetections by correlating them with one or

the other of the apparatus states, then the result for the light will be given by adding the

fringes and antifringes, which yields ˆ n = 1 2  once again. Thus, the interference which

was lost as a result of the distinguishability of the photon paths cannot be regained if we

                                                
2 The term “complementary fringes” is often used, but may be confusing because the fringes and
antifringes are not complementary in the same sense as are noncommuting observables.
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continue to measure only the light -- we must correlate the light measurements with the

results of the ˆ ′ O  measurements in order to see the interference.

Any apparatus in which “which path” information can be obtained and then

destroyed by correlation with an auxiliary measurement may be called a “quantum

eraser.” Various proposals for accomplishing this have been presented and analyzed in

the last decade [7-19], though few have been carried out, and only two [14,16] have

qualified as true quantum erasers.3

2.2 Schematic and theory

2.2.1 Schematic of the experiment

Our scheme for creating a quantum eraser [16] is depicted in Figure 2.4. The

pump beam is incident from the left, and is split at the input to a Mach-Zehnder

interferometer. Each arm of the interferometer contains a type-I parametric

downconverter (NL1, NL2), which converts a small fraction of the x-polarized pump

photons in modes p1 and p2 into pairs of y-polarized signal and idler photons. The

signal beams are allowed to continue through the interferometer in modes s1 and s2,

and are ultimately recombined at beamsplitter BSs and sent to detector A. Meanwhile,

the idler beam from NL1 passes through a half-wave plate (R1) that rotates its

polarization from y to x; accordingly, we label the idler modes from NL1 and NL2 as ix

and iy, respectively.

                                                
3 Reference [13] contains an illuminating discussion about what features distinguish true quantum
erasers from other demonstrations of complementarity. Three “true quantum erasers” are proposed there,
one of which is very similar to our experiment. An earlier experiment [12] by the same authors is then
regarded as not being an optimal demonstration of a true quantum eraser.
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R1
NL1

NL2

p1

p2

R2

ix iy

s1

s2
BSs

BSi

Figure 2.4 Experimental realization of a quantum eraser. The pump beam is split at the

input and is downconverted in either NL1 or NL2. The signals are allowed to interfere,

while the idlers carry the "which path" information which may be erased.
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2.2.2 Quantum state of the light

The interaction Hamiltonian for this system is the sum of the Hamiltonians for

each downconverter:

ˆ H I = ˆ H I1 + ˆ H I2

= g ˆ a p 1ˆ a s 1
† ˆ a ix

† + gˆ a p 2 ˆ a s 2
† ˆ a iy

†[ ] + h.c
(2.13)

Each interaction in the brackets specifies the annihilation of a pump photon and

simultaneous creation of a signal and idler pair in the modes specified above. This

provides a coupling of exactly the form required by Eqs. (2.4), as shown explicity by

 
ˆ H I 1 p1 = g 1 s1 1 ix

ˆ H I 1
p2

= g1
s2

1
iy

(2.14)

Here the idler polarization plays the role of the external observable ˆ O  and takes on one

of two distinct values depending on the path of the signal photon.

Because the pump field is generated by a laser, it is more accurately represented

by the coherent state V0  than by a one-photon fock state. After the first beamsplitter,

the initial state of the system is the direct product of two coherent states for the pump

beams in modes p1 and p2 [20] with the signal and idler modes in the vacuum state:

0( ) = i
V0

2 p1

V0

2 p2

vac s1,s 2, ix,iy (2.15)

If the interaction is weak, the state of the light after the downconverters may be found by

the perturbative method in Chapter 1. The result is

= vac +
1

2
1 s1 1 ix + 1 s2 1 iy{ }

= vac + 1( ) ,
(2.16)

where  is a creation efficiency parameter satisfying
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2 << 1. (2.17)

Since the vacuum will not contribute any photodetections, we may use the state

1( ) =
1

2
1 s1 1 ix + 1 s 2 1 iy{ } (2.18)

to compute the expectation values of any measured quantities. Note that this state has

the same entangled form as the one in Eq. (2.5).

2.2.3 Predicted counting rates

 The single-mode field operator for the light at detector A is given by

  
ˆ E A

+( ) =
l
2

iei 1 ˆ a s1 + ei 2 ˆ a s2( ) (2.19)

where   l  is a unit constant with dimensions such that the intensity ˆ E A
2

 is in units of

photons per second. If the photodetector A is perfectly efficient, it will detect photons at

the rate

RA = 1( ) ˆ E A
−( ) ˆ E A

+( ) 1( ) = ˆ E A
+( ) 1( ) 2

=
1

2
(2.20)

which does not exhibit interference, in analogy with (2.6). This is to be expected,

because in principle a measurement of the idler polarization could reveal which crystal

produced each signal photon. In the scheme of Figure 2.4, this information is accessed

by combining the ix and iy idler modes at BSi and sending them through a polarizing

beamsplitter, whose outputs are monitored by detectors B and C. The field operators at

these detectors are

  

ˆ E B
+( ) =

l
2

ˆ a iye
i y

ˆ E C
+( ) =

l
2

ˆ a ixe
i x .

(2.21)
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It is not suprising to find that in this configuration, the joint detection rates

RAB,AC = 1( ) ˆ E A
−( ) ˆ E B, C

−( ) ˆ E A
+( ) ˆ E B ,C

+( ) 1( ) = ˆ E A
+( ) ˆ E B, C

+( ) 1( ) 2

=
1

4
 (2.22)

do not display interference4.

The quantum eraser is formed by insertion of a half-wave plate (R2) into the

mixed idler beam with its optical axis oriented at 22.5˚ to either the x or y polarization.

This has the effect of rotating both polarizations by 45˚, so that the fields at detectors B

and C become

  

ˆ ′ E B
+( ) =

l
2

ˆ a iye
i y + ˆ a ixe

i x( )
ˆ ′ E C

+( ) =
l
2

ˆ a iye
i y − ˆ a ixe

i x( ).
(2.23)

Measurement of the idler polarization in this rotated basis x + y, x - y( ) , by detecting

the idler at B or C, is equivalent to measuring the observable ˆ ′ O  in the previous section,

so that the “which-path” information is permanently erased. Accordingly, the

interference must return for each subensemble of signal photons detected in coincidence

with the idlers at B or C: the interference fringes are displayed by

′ R AB = 1( ) ˆ E A
−( ) ˆ ′ E B

−( ) ˆ E A
+( ) ˆ ′ E B

+( ) 1( ) = ˆ E A
+( ) ˆ ′ E B

+( ) 1( ) 2

=
1

4
1+ cos 1 − 2 + Θ( )( )

(2.24)

while the antifringes are seen in

′ R AC = 1( ) ˆ E A
−( ) ˆ ′ E C

−( ) ˆ E A
+( ) ˆ ′ E C

+( ) 1( ) = ˆ E A
+( ) ˆ ′ E C

+( ) 1( ) 2

=
1

4
1 − cos 1 − 2 + Θ( )( ).

(2.25)

                                                
4 These probabilities sum to 1/2, rather than 1, because only half of the idler photons are collected
from BSi in this arrangement. If a polarizing beamsplitter were used for BSi, this would be avoided.
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Here Θ ≡ x − y  is an overall phase shift acquired by the idlers during propagation to

BSi.

2.3 Experimental procedure and results

2.3.1 Apparatus

For the experiment, the pump was a 250 mW ultraviolet laser beam generated by

a cw Argon-ion laser operating at a wavelength of 351 nm. The downconverters NL1

and NL2 were 2.5 cm long LiIO3 crystals cut for type-I phase-matching. The mean

signal and idler wavelengths were chosen to be 789 nm and 633 nm, respectively, so that

the idler paths could be more easily aligned with the help of a HeNe laser beam. To

observe interference fringes, BSs was mounted on a piezoelectric ceramic transducer

(PZT). The PZT expanded linearly in response to an applied voltage, at the rate of about

2 nm per volt: this allowed the relative lengths of the two paths to be varied on a scale

comparable to the wavelength of the light.

The photodetectors were EG&G model SPCM-200 avalanche photodiodes with

dead time of about 150 ns and quantum efficiency of about 50% 5. The 150 ns TTL

pulses generated by the detectors were used to trigger discriminators; these, in turn,

emitted 4.5 ns NIM pulses that were fed to single-channel counters and to a coincidence

counter. The detector jitter time of about 4.5 ns implied that any signals reaching the

coincidence counter within a resolving time of 9ns could have been due to the

simultaneous arrival of photons at the pair of detectors. The number of “accidental”

coincidences due to uncorrelated photons that could occur in this time was computed

                                                
5 The imperfect photodetection efficiencies have the effect of scaling all of the predicted counting rates
by linear factors; these factors do not affect the ability of the apparatus to display the fringes and
antifringes, and were omitted from the preceding discussions for the sake of clarity.
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from the measured single-channel counting rates and the coincidence resolving time,

and subtracted out.

1 nm-bandwidth  filters were placed in front of the detectors to eliminate

background noise. For the signal beams, the range of frequencies selected by these

filters corresponded to a coherence time of roughly 2 ps for the photon wavepackets, so

that the optical path lengths of the two possible photon paths in the interferometer were

required to be equal to within 600 µm for interference to occur. Lenses were also placed

in front of each detector to focus the light onto their 100 µm-diameter active areas.

The pump laser delivered an average of 4x1017 photons to the initial beamsplitter

per second. However, the downconversion efficiency was very low -- the probability of

a given pump photon producing a signal/idler pair was only

2 ≅ 10−11 , (2.26)

in keeping with (2.17). It was therefore extremely unlikely that each crystal

independently generated a photon pair within the 2 ps coherence time required for the

signals to overlap at the final beamsplitter, so that only one signal photon at a time was

in the interferometer.

2.3.2 Results

Starting with the input of a pump photon at the initial beamsplitter, we see that

there were two distinct ways for a signal photon to reach the final photodetector within

the coherence time: either the pump photon traversed the upper arm and was

downconverted at NL1, or it traversed the lower arm and was downconverted at NL2.

These two paths were distinguishable, because in principle, any signal measurement at A

might have been correlated with an idler polarization measurement, which would have
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revealed the origin of the pair. Accordingly, the signals did not display interference, as

seen in Figure 2.5.

However, when we erased the “which path” information by detecting the idlers

in the 45˚ rotated basis, the interference fringes returned in each subensemble. The

coincidence counts from detectors A and B displayed fringes, while the coincidences

between A and C revealed antifringes. The recorded fringes and antifringes are shown

in Figure 2.6.

2.4 Discussion

2.4.1 Comparison with the “quantum preventer” of Zou et al.

It has been shown that a more direct means of destroying the information about

the origin of the signal photons is simply to align the path of idler 1 so that it overlaps

completely with that of idler 2 everywhere [21,22]. This makes the idlers forever

indistinguishable, owing to the fact that they belong to the same mode, so that the

“which path” information for the signals cannot be obtained, even in principle. In this

elegant demonstration of complementarity, which has been called “Induced coherence

without induced emission,” the signal interference returns without the need to observe

the idlers at all, as shown in Figure 2.7 (a).

In this case, it is tempting to speak of the overlap of the idler beams as

“erasing” the which-path information for the signals [23]. But it is more accurate to

say that when the idler paths overlap, the which-path information is not so much erased

as it is prevented from ever existing. It is this fact which accounts for the return of the

interference of the single-channel counts without the need to divide them into “fringe”

and “antifringe” subensembles -- see Figure 2.7 (b). This lack of post-selection

through coupling to an external observable is what ultimately prevents this apparatus
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Figure 2.5 Measured single-channel and coincidence counts when the paths of the

photons were distinguishable. The coincidence counts have been corrected for

accidentals.
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Figure 2.6 Measured single-channel and coincidence counts when the paths of the

signals were distinguishable, but the paths for coincidence detection were

indistinguishable. The coincidence counts have been corrected for accidentals.
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Figure 2.7 (a) Experimental arrangement which makes the signal paths

indistinguishable in principle. Here R1 does not alter the idler polarization, so that the

idler paths overlap completely. (b) Measured single-channel photodetections for the

above apparatus. Interference returns for the signals without the need to select a

subensemble via an auxiliary measurement. This is not a quantum eraser.
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from being a true quantum eraser.6 Similar arguments also prevent at least two other

interference experiments [12,25] from qualifying as quantum erasers in the strict sense

[13].

2.4.2 “In principle” vs. “in practice” distinguishability revisited

In the introductory chapter, we asked what the implications would be for

interference in a 2-slit interferometer if we were to allow each slit to create a “marker”

as the photon passed through it, without disturbing the path of the photons themselves.

The experiment described in this chapter corresponds to exactly this situation: the idlers

play the role of the markers, while the signal photons complete the paths begun by the

pump photons (see Figure 2.8). The “final screen“ where the interfering photons are

registered is analogous to detector A, and we explore different parts of the interference

pattern by actively changing the relative phase between the two arms and counting

photons according to

R ∝ ˆ E −( ) ˆ E +( ) . (2.27)

This expectation value, which is of the second-order in the field operator, exhibits

interference modulation whenever it is impossible in principle to identify which path a

photon may have taken to arrive at the detector. As shown in Eq. (2.20) and Figures 2.5

(a) and 2.6 (a), this kind of interference never occurs in the quantum eraser experiment,

because the marker photons always have the potential to identify the signal paths.

However, if the markers are manipulated properly and subsequently measured

along with the signals in a way that prevents them from identifying the signal paths,

interference returns. The events of this type are coincidence counts of the form

                                                
6It may not be a quantum eraser, but this experiment has been called a “remarkable” [13] and “mind-
boggling” [24] demonstration of complementarity by other researchers.
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Figure 2.8 The quantum eraser presented as a variant of Young’s double-slit

experiment. The marker (idler) photons are generated at points B and C, while the signal

photons continue undeflected towards the screen. If the markers are measured in the

“eraser” basis, the fringes and antifringes may be seen at the screen in conjunction

with these measurements. Viewed without these correlations, the complete ensemble of

events at the screen does not display interference, because the paths ABD and ACD

remain distinguishable in principle.
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Rcc ∝ ˆ E 1
−( ) ˆ E 2

−( ) ˆ E 2
+( ) ˆ E 1

+( ) . (2.28)

In the quantum eraser, it is only these fourth-order measurements which display

interference.

The standard interpretation, presented in this chapter, views this coincidence

modulation as a kind of “gated second-order” interference, in which paths for the

single-channel events within the fringe and antifringe subensembles have been rendered

“indistinguishable in practice” by the appropriate detection of the marker photons in

the rotated basis -- so long as the markers are actually detected in this basis, the signal

paths are indistinguishable. But strictly speaking, the quantum eraser does not actually

recover the second-order interference of the signal photons, because the signal photon

paths remain distinguishable in principle via an auxiliary measurement, whether or not

they are actually distinguished in practice. Instead, the quantum eraser displays fourth-

order interference on those occasions when the sets of signal and idler paths leading to

coincidence detection are indistinguishable in principle.7

In the quantum eraser, then, we see a clear demonstration of the principle of

complementarity for wave and particle behavior: interference occurs between

indistinguishable pathways that lead to the final event. One must keep in mind, though,

that “events” may involve several particles, that “pathways” may include the multiple

paths traveled by these particles, and that the pathways must be indistinguishable in

principle, and not just in practice.

                                                
7 The “quantum preventer” discussed in the previous section does not make this distinction, because it
shows a return of second-order interference whenever those paths are made indistinguishable in principle
by overlapping the idlers.
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Chapter 3

Spectral distinguishability and interference

3.1 Introduction

3.1.1 Ultrafast pump pulses and type-II downconversion

Up to this point we have been discussing experiments involving type-I

parametric downconverters pumped by a cw laser source. But as we noted in the first

chapter, there are situations in which it might be advantageous to use type-II phase-

matching instead; in particular, this allows the possibility of constructing common-path

interferometers, in which the signal and idler beams are emitted collinearly and

separated later via their orthogonal polarizations.

Moreover, there are also advantages in using a pulsed, rather than cw, pump

source. When the pump is cw, the photon pairs are produced at random times so long

as the pump is turned on. Although we have not made explicit use of the multimode

state for the photon pairs generated with cw pumping, it is shown in Appendix A that

the signal and idler photon wavepackets may actually be quite short, only a few ps, in

duration. So long as we are only interested in interference experiments involving one set

of downconverted photon pairs at a time, this is not a problem, since the two members

of the pair are emitted simultaneously. But if we are interested in performing multi-

particle interference experiments, like the GHZ nonlocality experiment mentioned in

Chapter 1, for example, the random photon emission time and the short photon

wavepackets make it very unlikely that the photons from one downconverter are

generated at the right time to interfere with those emitted from another. A pulsed pump

has the potential to solve this problem, because if a photon pair is produced, it must be
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created while the pump pulse is inside the downconversion crystal. In the domain of so-

called “ultrafast” lasers, pulse durations on the order of 100 fs are now routine. It

might seem a trivial matter, then, to pump several thin crystals simultaneously and to

synchronize their emissions to within the few ps needed for the various signal and idler

wavepackets to overlap within the apparatus.

 It may seem straightforward, but as we will see below, if we wish to use type-II

phase matching along with an ultrafast pump pulse, we must tread carefully into the

domain of quantum interference. We have already encountered several examples of the

intimate relationship between interference and indistinguishability. In this chapter, we

will see that the broad bandwidth of an ultrafast pump pulse, in conjunction with the

birefringence of the type II downconversion crystal, produces distinguishing “which-

path” information in the spectral domain that effectively destroys the potential for

interference of these photon pairs in at least one apparatus—the Hong-Ou-Mandel

interferometer.

3.1.2 Fourth-order interference in the Hong-Ou-Mandel interferometer

In the quantum eraser experiment, we have an example of fourth-order

interference, in which interference fringes can be seen in the coincidence counts

generated by the simultaneous detection of signal and idler photons at two detectors.

The Hong-Ou-Mandel interferometer (HOMI) [1] is another type of fourth-order

interference apparatus, displayed in Figure 3.1. The signal and idler photons from a

parametric downconverter are incident on a “symmetric” beamsplitter having

reflectivities and transmissivities

R = ′ R = iT = i ′ T =
1

2
. (3.1)
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Figure 3.1 The Hong-Ou-Mandel interferometer, in which two photons produced in the

process of parametric downconversion are brought together at a beamsplitter. The

output ports of the beamsplitter are monitored by a pair of photodetectors which register

coincidence counts. When the beamsplitter is positioned correctly, so that it is

impossible in principle to determine whether a coincidence count occurred via double-

transmission or double-reflection, these two coincidence paths interfere destructively

and result in a coincidence counting rate of zero. If the beamsplitter is moved away from

this position, the destructive interference is degraded because it is now possible to use

the relative timing of the two detections to determine whether a double-reflection or

double-transmission actually took place. As the two paths become more and more

distinguishable, the coincidence counts  rise from zero to the nominal “background”

rate of half the total pair production rate. The “dip” in the plot of coincidence counts

vs. beamsplitter position is a signature of quantum interference for the photon pairs.
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A pair of photodetectors monitors the output modes of the beamsplitter, which are

related to the input modes by the usual transformations:

ˆ a 2 = R ˆ a 0 + ′ T ˆ a 1
ˆ a 3 = Tˆ a 0 + ′ R ˆ a 1

. (3.2)

In the simple monochromatic mode treatment, the state of the light produced by the

downconverter is

= vac + 1 0 1 1 . (3.3)

The predicted coincidence counting rate is then given by

Rcc ∝ : ˆ n 2 ˆ n 3 : = ˆ a 2 ˆ a 3
2

                               = Rˆ a 0 + ′ T ˆ a 1( ) T ˆ a 0 + ′ R ˆ a 1( ) vac + 1 0 1 1{ }2

                               = 2 R ′ R vac + T ′ T vac
2

. (3.4)

The last line shows that the coincidence counting rate is the squared modulus of

the sum of two quantum-mechanical amplitudes for the processes that lead to

coincidence counts: double-reflection and double-transmission. Using the relations in

(3.1) leads us to

Rcc ∝ 2 1

2
vac −

1

2
vac

2

= 0

. (3.5)

That is, because of the net phase-shift of 180˚ between the double-reflection and double-

transmission amplitudes, the two processes destructively interfere and result in no

coincidence counts. What is inferred from this is that when the two photons meet from
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different sides of a symmetric beamsplitter, they must both emerge in the same

direction, that is, into mode 2 or mode 3.1

If, instead of the monochromatic two-mode state in (3.3), we analyze the HOMI

when the light is in the cw-pumped multimode state derived in Appendix A,

= vac + d sΦ s , p − s( )1
s , o 1

p − s ,o

0

∞

∫ , (3.6)

we find that the coincidence counting rate is

Rcc ∝ 2
1 − e− c[ ] , (3.7)

where c  is the displacement of the beamsplitter from the central position in which the

signal and idler photon path lengths to the beamsplitter are identical. Here c ≈ 1 ∆  is

the coherence length of the signal and idler wavepackets, where ∆   denotes the

bandwidth of the phase-matching function Φ  for each downconverted field. Equation

(3.7) predicts a coincidence counting rate of zero for the symmetric beamsplitter

position = 0, and a rising rate as the beamsplitter moves away from this position.

This is an indication that, for positions other than = 0, the destructive interference of

the double-reflection and double-transmission paths is no longer complete; in fact it

vanishes entirely when the signal and idler path lengths to the beamsplitter  differ by

more than c c . In that case, the two coincidence paths are completely distinguishable in

principle from the relative arrival time of each photon at its detector. When the time

delay is longer than the coherence time of the wavepackets, the order in which the

detectors fire is enough to reveal which of the two coincidence paths actually generated

the event.

                                                
1 Of course, the choice of exit mode (2 or 3) is not actually made by the photons until a measurement
forces the issue. Until then, the photon pairs are in a superposition state of having chosen mode 2
together or mode 3 together.
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Interestingly, it does not matter whether we have photodetectors with sufficient

time-resolution to actually make the necessary distinction as to which photon arrived

first. The fact that our (slow) photodetectors are often unable to reveal which of the two

processes generated the coincidence event might seem to make the processes

“indistinguishable in practice”, but as we have already seen, this kind of

indistinguishability — which comes from ignoring information that is really present in

the system — is not good enough to generate interference. It remains possible, in

principle, to use faster photodetectors and discover which process led to the event,

provided that ≥ c , and this is what prevents the two-photon detection amplitudes

from interfering with each other.

On the other hand, if the light itself is modified before it reaches the

photodetectors, this can have an impact on the interference. For example, if the signal

and idlers are sent through a narrowband filter which increases their coherence times,

then the “dip” becomes wider as the new coherence time plays the role of c  in (3.7).

This is in keeping with our maxim that “indistinguishability in principle” is what

matters, because for the light that survives the filtering process, no photodetector timing

resolution can be high enough to provide complete “which-process” information for

delays inside this (widened) dip structure. The information does not exist, because the

photons may be found anywhere inside their wavepackets.

Several variations of the HOMI experiment have been carried out in recent

years,[2-11] usually with the aim of demonstrating the effects produced by various

kinds of distinguishing information for the coincidence processes. Most of these

experiments have been conducted with cw-pumped type-I downconverters. A few have

used cw-pumped type-II downconversion, with signal and idler photons sometimes

incident on a polarizing beamsplitter (PBS), rather than a conventional beamsplitter.
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The experiment reported in this chapter is yet another variation[12], in which  an

ultrafast pump is used for the type-II downconversion. As with other variations, this

experiment was undertaken with the idea of exploring the effects of distinguishing

information on the “dip” visibility. We chose to look at this information as “spectral”

in nature[13], but it is also worth noting that a similar set of experiments was recently

conducted and fully analyzed in the time domain [14,15]. The two ways of expressing

the distinguishing information are of course equivalent, and this has been shown

recently by Grice[16]. In the interests of simplicity, we will focus only on the spectral

interpretation.

3.2 Schematic and theory

3.2.1 Schematic of the experiment

We will investigate the effects of ultrafast pumping on the interference visibility

for photon pairs in the collinear HOMI. A schematic of this system is shown in Figure

3.2. An ultrafast pump pulse is incident from the left on a nonlinear crystal (PDC) cut

for type-II phase-matching. Inside the crystal, the pump pulse has a small chance to

produce a pair of signal and idler photons, polarized along the o and e axes of the

crystal, respectively. The signal and idler beams exit the crystal collinearly. Because the

crystal is birefringent and imposes different degrees of dispersion on the o and e

polarizations, the group velocity inside it is higher for the idler, which emerges ahead of

the signal. This is referred to as “temporal walk-off.”

The signal and idler are next transmitted through a series of birefringent quartz

plates. These plates can be inserted separately in various combinations to create a

variable delay   between the signal and idler wavepackets. The signal and idler then

have their polarizations rotated through 45˚ by the λ/2 plate, and enter the polarizing
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Figure 3.2  The collinear Hong-Ou-Mandel interferometer. The photon pairs are

produced by type-II parametric downconversion from an ultrafast pump pulse, and

emerge with orthogonal o and e polarizations. Because the downconverter is

birefringent, the o-polarized signal lags behind the e-polarized idler. The photons travel

through several birefringent quartz plates, imparting a net relative delay of   between

the signal and idler wavepackets. The λ/2 plate then rotates both polarizations by 45˚,

and the photons enter the PBS, which transmits the horizontal polarization while

reflecting the vertical. Since the rotated signal and idler polarizations are equally

weighted superpositions of these two, each has a 50% probability of being projected

into the vertical or horizontal output mode. This leads to two distinct two-photon paths

for coincidence counts, whose amplitudes are expected to interfere destructively when

= 0.
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beamsplitter (PBS), which has its selection basis matched to the initial o and e

polarizations. Because each photon has a 50% chance of being reflected or transmitted

by the PBS, there are two equally probable ways for a pair of photodetectors monitoring

the output ports to register coincidence counts. As in the type-I HOMI, the amplitudes

for these processes are 180˚ out of phase with each other, so as to cancel all

coincidences in the cases where they are indistinguishable.

In the experiment we record the coincidence counting rate as a function of the

delay . The extent to which the rate dips down to zero at its minimum is then a

measure of the indistinguishability of the coincidence paths.

3.2.2 Quantum state of the light

The quantum state for the downconversion produced by a single pump pulse

can be obtained from the appropriate interaction Hamiltonian, by letting the resulting

time evolution operator act on the input vacuum state, and truncating the resulting state

to the lowest nonvanishing order in the perturbation2. The state of the downconverted

light in the interaction picture is then

= vac + o + e( )Φ o , e( ) o o e e
e

∑
o

∑

= vac + 1( ) ,
(3.8)

where the labels o and e denote the polarizations and frequencies of the signal and idler,

respectively, T is the interaction time equal to the pump pulse duration, and  is the

mode spacing. This state is a continuous superposition of two-photon states, in which

the probability amplitude for each pair of frequencies to be emitted is the product of the

spectral pump envelope, o + e( ), and the phase-matching function Φ o , e( ).

                                                
2 See reference [16]. For an explicit derivation of this state, see Appendix B.
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The creation efficiency parameter  is defined as

  
≡

gl xl ylzV0

ih
(3.9)

where the   lm  are the dimensions of the interaction region, V0

2
is the peak intensity of

the pump pulse, and g is a coupling constant between the pump ad downconversion

modes that contains whatever units are necessary to ensure that  is dimensionless. This

state is valid in when the “nondepleted pump” approximation holds, for which we

require

2 1( ) 1( ) << 1. (3.10)

The spectral pump envelope α is the Fourier transform of the time-dependent

part of the classical pump field. The amplitude spectrum of a single pump pulse is

assumed to have a normalized gaussian form with bandwidth , centered at twice the

mean downconversion frequency 2 ,

o + e( ) =
2

e
− o + e − 2 

  
 
  

2

. (3.11)

  is real and has units that ensure 1( )  is dimensionless. It is written as o + e( ) to

remind us that in the long interaction time-limit, only those photons are emitted whose

signal and idler frequencies sum to the pump frequency3. Plots of this function for

several different bandwidths are displayed in Figure 3.3 (a).

Of course, for a given pump frequency, there are an infinite number of values

for o  and e that satisfy p = o + e . The relative amplitudes for emission of all

these possible combinations are determined by the phase-matching function,

Φ o , e( ) = sinc 1
2 ko o( ) + ke e( ) − kp o + e( )[ ]L( ) . (3.12)

                                                
3 This satisfies the energy-conserving phase-matching condition. See Appendix B for details.
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(b)(a) (c)

o + e( )     ×      Φ o, e( )       =            S o, e( )

o

Figure 3.3  Pump envelope function o + e( ) for three different values of the pump

bandwidth (a) and the phase-matching function Φ o , e( )  for BBO (b). As the pump

bandwidth gets larger, more of the asymmetric character of Φ o , e( ) is revealed in the

joint emission amplitude spectrum S o , e( )  (c). Consequently, the marginal signal and

idler spectra are more dissimilar.

o

o

eee
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where   L = l z  is the length of the crystal along the direction of propagation. If the PDC

is oriented for optimal downconversion at the mean pump, signal, and idler frequencies

so that ko( ) + ke( ) − kp 2( ) = 0 , this function may be approximated by

Φ o , e( ) ≅ sinc 1
2 o −( ) ′ k o + e −( ) ′ k e − o + e − 2( ) ′ k p[ ]L( )

= sinc 1
2 o −( ) ′ k o − ′ k p( ) + e −( ) ′ k e − ′ k p( )[ ]L( ) . (3.13)

The parameters ′ k o, e ≡
ko ,e and ′ k p ≡

ke

2

are the inverse group velocities within the

PDC4. This function is depicted in Figure 3.3 (b).

Figure 3.3 (c) shows what happens when these two functions are multiplied

together to produce the joint two-photon emission amplitude spectrum,

S o , e( ) ≡ o + e( )Φ o, e( ) . (3.14)

The magnitude of this function determines the relative likelihood of emission for the

various possible signal and idler frequencies o  and e . By integrating over one or the

other of these frequencies, we can obtain emission spectra for just the signal or idler

wavepackets. We see from these marginal distributions that for a narrowband cw pump,

the signal and idler spectra are identical, but for a broadband pump they are not. This

asymmetry occurs because the phase-matching function in (3.13) depends on the

inverse group velocities ′ k o  and ′ k e , which are not identical for the two different

polarizations within the birefringent type-II crystal. Therefore, the ranges of frequencies

determined by Φ for the signal and idler are not the same. This carries implications for

interference, because, in principle, measurement of the frequencies of these photons

could sometimes reveal whether it was the signal or the idler that was detected. In other

words, the emitted signal and idler photons have become at least partially “spectrally

distinguishable” from each other, which reduces the visibility of interference effects.

                                                
4 For type II downconversion in BBO, the pump must be e-polarized (see Section 1.3.3).
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3.2.3 Predicted counting rates

3.2.3.1 Two-photon coincidence probabilities from one pulse

How does this “spectral distinguishability” impact the two-photon interference

in our interferometer? Let us calculate the expected rate of coincidence counting for the

apparatus described above. For a single pump pulse, the probability that DA registers a

photon within a time interval dtA  centered at time tA and that DB registers a photon

within dtB  centered at tB is pAB tA ,tB( )dtAdtB . The instantaneous probability density pAB

is given by the normally ordered expectation value

pAB tA ,tB; ,( ) = : ˆ E A
−( ) tA( ) ˆ E A

+( ) tA( ) ˆ E B
−( ) tB( ) ˆ E B

+( ) tB( ) :

= ˆ E A
+( ) tA( ) ˆ E B

+( ) tB( )
2

,
(3.15)

where the dimensions of ˆ E A, B

2

are photons per second. For the moment we are

assuming perfect detection efficiency for DA and DB. Because of the PBS, the electric

field which impinges onto DA is the sum of the vertical  projections of the e and o

downconversion fields after they have been time-delayed by the quartz and rotated

through 45 degrees by the λ/2 plate:

ˆ E A
+( ) t;( ) = 1

2
ˆ E e

+( ) t −( ) + ˆ E o
+( ) t( )[ ]. (3.16)

Likewise, the field at DB is the horizontal projection

ˆ E B
+( ) t;( ) = 1

2
ˆ E e

+( ) t −( ) − ˆ E o
+( ) t( )[ ] (3.17)

The electric field operators for the e and o modes each have Fourier decompositions in

terms of their own frequency-specific annihilation operators, given by

ˆ E o,e
+( ) t( ) =

2
ˆ a o ,e( )e−i t∑ , (3.18)
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so that we may rewrite the time-dependent field operators at the detectors as

ˆ E A
+( ) t;( ) =

2
1
2

ˆ a e ( )ei + ˆ a o ( )[ ]e− i t∑

ˆ E B
+( ) t;( ) =

2
1
2

ˆ a e ( )ei − ˆ a o ( )[ ]e− i t∑ .

(3.19)

Substituting (3.19) and the state (3.8) into (3.15) and taking the limit → 0  yields

pAB tA ,tB;( ) =
2

4( )2 d od e

0

∞

∫
0

∞

∫ o + e( )Φ o , e( )

× e−i e t A −( )+ ot B[ ] − e−i e t B −( ) + o t A[ ]{ } vac
2

(3.20)

for the instantaneous coincidence probability density. The probability of obtaining a

coincidence count regardless of the exact time of arrival for each photon is found by

integrating this probability density over all possible tA and tB values within the

coincidence time. Because this coincidence time (usually tens of ns) is much longer

than the duration of the pump pulse (a few hundred fs), we are justified in extending the

time limits of integration to ±∞  and writing

PAB ( ) = dtAdtB pAB tA ,tB;( )
−∞

∞

∫
−∞

∞

∫ . (3.21)

After substituting (3.20) into this and carrying out the time integration, we obtain the

result

PAB ( ) =
2

2
d od e o + e( ) 2

0

∞

∫
0

∞

∫ Φ o , e( ) 2{
−Φ∗

e , o( )Φ o , e( )ei o − e( ) }.

(3.22)
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Because  is small, this probability never approaches 1: we must keep in mind that in

the weak-interaction approximation, the most likely outcome is that no downconversion

is produced at all.

 The first term in (3.22) is an integration of the total two-photon probability

density distribution over all frequencies, and represents the total “background” rate of

coincidence detection independent of δτ. The second term, which contributes only for

small values of , is the source of the coincidence “dip” observed in the traditional

HOMI experiments.5 For = 0 the coincidence rate reaches zero if

Φ o, e( ) 2
= Φ∗

e , o( )Φ o, e( )  (3.23)

over the entire range of frequencies that contribute to the integral in (3.22). As

discussed above, this range is set by the bandwidth of the pump spectrum specified by

o + e( ). Equation (3.23) would be satisfied if the phase-matching function were

symmetric under exchange of the signal and idler frequencies; however, we have already

noted that the phase-matching function for type-II downconversion does not possess

this symmetry. Furthermore, because the range of sum-frequencies allowed by an

ultrafast pump is quite broad, the value of PAB ( )  can be appreciable even at = 0,

which degrades the interference visibility of the dip.

3.2.3.2 Symmetry and indistinguishability

Why should the two-photon interference visibility be sensitive to the symmetry

of Φ o , e( )? We will pause here to examine this question in more detail. Consider the

two coincidence processes depicted in Figure 3.4, and suppose for the moment that we

                                                
5 The complex conjugation of Φ is included for the cases in which the origin is chosen at a point other
than the center of the interaction region, leading to a complex-valued phase-matching function. See
Appendix B.
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Figure 3.4  Two distinct processes may lead to the detection of a particular pair of

frequencies A  and B  at detectors DA and DB: reflection of the idler and transmission

of the signal (a) or transmission of the idler and reflection of the signal (b). The

amplitudes for the emission of photon pairs with the correct frequencies for these two

cases (shown to the right) lie across the line of symmetry o = e   from each other.
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are employing photodetectors DA and DB with very high frequency resolution, so that

they identify the frequencies of their detected photons as A  and B  , respectively. This

coincidence event could have come from either of two distinct processes. Figure 3.4 (a)

shows reflection of the signal (so that o = A ) and transmission of the

idler( e = B ): the amplitude for the signal and idlers being emitted with this

combination of frequencies is

S o = A , e = B( ) = A + B( )Φ A , B( ). (3.24)

Figure 3.4 (b) shows the second process, reflection of the idler ( e = A ) and

transmission of the signal ( o = B ): the two-photon emission amplitude for this

combination of frequencies is

 S o = B , e = A( ) = B + A( )Φ B, A( ). (3.25)

 If the amplitudes for these competing two-photon processes are not equal, it is more

likely that one or the other of them actually generates the coincidence event. In fact, one

might be able to identify the actual signal and idler paths with certainty, if the amplitude

for the other set of paths were zero. The degree of exchange symmetry in Φ o , e( ) is

therefore an indicator of how “spectrally indistinguishable” the possible photon pairs

will be from one another, and this is why it controls the degree of “dip” visibility.

Of course, for the experiment we did not use detectors with the high  frequency

resolution required to make these distinctions. Once again, though, this

“indistinguishability in practice”, which comes about from ignoring the spectral

“which-path” information after the light has been detected, is not enough to restore the

dip visibility. The fact that the two-photon paths are distinguishable, in principle, is all

that is required to degrade the interference.
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This discussion suggests another approach for improving the interference

visibility, namely, modification of the spectral characteristics of the light itself, so that

the distinguishing information is lost before the light reaches the detectors. The idea is

to use spectral filters to restrict the range of detection frequencies to just those regions

where the signal and idler frequencies are most similar -- that is, to the regions where

Φ o , e( ) is nearly symmetric. The two-photon events that are the most distinguishable

would then be the ones that were discarded by the filters before reaching the detector.

This method of discarding quantum information to regain interference is very much in

the spirit of the quantum eraser, and has even been performed before in the context of

polarization measurements in a type I HOMI [2] . However, it is not a true “quantum

eraser” in the strict sense, because it does not involve recovery of fringes and

antifringes as subensembles of a larger data set via correlation with an auxiliary

measurement [17] . In this scenario, it is the interfering particles themselves, the “two-

photon entities,” that are being selected or discarded to improve interference.

3.2.3.3 Coincidence counting rates

We will now complete our calculations for the expected coincidence counting

rates. The photodetectors in our laboratory are not perfectly efficient. We will assign

each detector, D , a quantum efficiency 0 ≤ ≤1 that reflects the fraction of

impinging photons which actually cause a photoelectric pulse to be emitted. In our real

apparatus, there will also inevitably be losses due to absorption or unwanted reflections

at all of the various optical interfaces. The percentage of emitted photons that arrive in

each single-channel of detection will be denoted by a collection efficiency 0 ≤ ≤ 1.

After multiplying the single-pulse coincidence probability (3.22) by all of these factors,
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and by the pulse repetition rate Rp , we have an expression for the expected coincidence

counting rate in the experiment:

RAB( ) =
2

2 A B A BRp B − D( )[ ] . (3.26)

Here

B ≡ d od e

0

∞

∫
0

∞

∫ o + e( ) 2
Φ o , e( ) 2

=
4 2

−

(3.27)

is the degree of spectral overlap for the photons created in the two downconversion

processes, while

D( ) ≡ d od e

0

∞

∫
0

∞

∫ o + e( ) 2
Φ∗

e , o( )Φ o , e( )e−i e − o( )

= 2B
2

o + e( ) erf o + e( )
2 2

1
2

−
−

 
 
 

 
 
 

 

 
 

 

 
 rect ;

− −

2
, −

2
 
 
  

 
 

(3.28)

is the “dip” generating term that depends critically on the symmetry of Φ. In these

expressions,

 o,e ≡ L
kp

2

−
ko,e

 

 
 

 

 
  (3.29)

is the maximum difference between the group delays experienced by the pump pulse

and the o-wave or e-wave, after traveling the entire length of the PDC, and

 − ≡ e − o = L
ko −

ke
 

 
 

 

 
 (3.30)

is the maximum temporal walk-off between the signal and idler photons. It is convenient

to re-express (3.26) in the form
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RAB( ) = RAB0

1
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2

o + e( ) erf o + e( )
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(3.31)

 where

RAB0 = 2

A B A BRpB (3.32)

is the number of pairs per second that would be counted by the detectors without the

PBS in place. The nominal coincidence counting for > − 2 (outside the dip) is half

this value, which reflects the fact that in the absence of quantum interference effects,

only two of the four possibilities at the PBS lead to coincidence counts (double

transmission and double reflection).

 From (3.31), we see that the pump bandwidth σ plays a significant role in the

shape of the coincidence dip. The crystal length L also affects this shape, since it

determines the values of o , e , and − . To illustrate the effects of varying these two

parameters, RAB( )  is plotted for several different values of the dimensionless

product −  in Figure 3.5. For the cw case, the coincidence probability falls all the way

to zero in the familiar triangle shape reported for earlier type-II HOMI experiments

[10]. As −  increases, more and more of the asymmetric character of Φ o , e( ) is

“revealed” by multiplication with larger pump bandwidths, and the minimum value is

increased from zero.

3.3 Experimental procedure and results

3.3.1 Apparatus

The experiment is depicted in Figure 3.6.  The output of a modelocked

Ti:sapphire laser was frequency-doubled by focusing onto a .7 mm BBO crystal, cut

and aligned for type-I phase-matching. In the type-I upconversion process, two
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Figure 3.5  Predicted coincidence counting rate for several different values of the pump

bandwidth / temporal walkoff product − . The two-photon interference dip is degraded

as this product increases. Plots are shown for RAB0 =1 (Adapted from [16]).
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Figure 3.6  Experimental realization of the ultrafast pulse-pumped type-II collinear

Hong-Ou-Mandel interferometer. The second-harmonic was separated from the

fundamental beam by a sequence of prisms before impinging onto the .8 mm long BBO

downconverter. Another prism sequence separated the downconversion from the

residual pump. The quartz plates imposed a variable delay δτ between the signal and

idler photons. Their polarizations were rotated through 45˚ by a suitably oriented half-

wave plate before they encountered the polarizing beamsplitter (PBS). Avalanche

photodiodes DA and DB monitored the horizontally and vertically polarized output ports

of the PBS, and the electronic pulses from these detectors are fed to a coincidence

counter with a 9 ns coincidence window.
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vertically-polarized o-wave photons at the fundamental frequency are annihilated to

create one horizontally-polarized e-wave photon at twice this frequency. The Ti:sapphire

radiation had a mean wavelength of 810 nm, with a bandwidth of 10 nm, and a repetition

rate of 80 MHz. The frequency-doubled pulses had a mean wavelength of 405 nm, and

measured bandwidth of ∆ p = 3 nm , corresponding to a frequency amplitude

bandwidth of = 34.5ps−1 . The FWHM duration of a transform-limited gaussian

pulse with these characteristics is 97 fs. To test the dip visibility as a function of − , an

optional bandpass filter (F1) was placed in the pump beam to restrict this bandwidth to

∆ p = .8 nm , or = 9.2 ps-1.

The upconverted pump pulses were collimated by a second lens and separated

from the fundamental Ti:sapphire beam with a sequence of four prisms, each of which

was cut so that light incident at Brewster’s angle also experienced minimum deviation at

the output. The first prism introduced a frequency-dependent angular spread, so that the

810 nm beam could be blocked while the 405 nm beam continued on. The second prism

halted the angular spread, so that the 810 nm beam emerged with all of its frequency

components traveling parallel to each other, but separated in space. This “spatial chirp”

was undone by the last two prisms, which resulted in a collimated pump beam with no

transverse separation of the frequency components.

 The pump beam was then directed onto the downconversion medium, a BBO

crystal 1 mm in length, cut and aligned for type-II phase-matching with its extraordinary

axis parallel to the horizontal pump polarization. The collinear downconversion was

selected with apertures and separated from the residual pump radiation with another

dispersion-compensated series of prisms.

The delay line for the collinear Hong-Ou-Mandel interferometer consisted of a

series of antireflection-coated quartz plates, oriented so that their fast and slow axes
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were aligned with the signal and idler polarizations. By inserting different numbers of

plates with different orientations, we were able to vary the delay between the signal and

idler wavepackets ( )  in discrete steps. The plates imposed a relative delay of 32 fs per

mm of quartz inserted.

The downconverted photons then passed through a zero-order half-wave plate

(λ/2) oriented with its optical axis at an angle of 22.5˚ to the o polarization. This had the

effect of rotating the o and e polarizations of the signal and idler by 45˚. As a result,

both photons had a 50% chance to be reflected or transmitted by the subsequent

polarizing beamsplitter (PBS). The output ports of the PBS were monitored by two

EG&G SPCM 200-PQ avalanche photodiodes (DA and DB). The light was focused

onto the small active areas of these detectors with the help of long focal-length

(≈ 10 cm ) lenses. Broadband interference filters ∆ ≥ 20 nm were placed in front of

each detector to reduce spurious background counts. An optional filter (F2) could be

placed in the path of the downconversion to reduce the bandwidth of the downconverted

light to 10 nm; this was done in the hopes of improving the visibility with the

“quantum-eraser” type scheme discussed in Section 4.2.3.2.

The pulses from the detectors were fed into discriminators which emitted 4.5 ns-

long NIM pulses that were triggered on the leading edge of each input pulse. These

pulses were then fed to a coincidence “AND” gate, which sent out a NIM pulse

whenever both of its inputs registered a “logical 1.”  The 4.5 ns duration of the input

pulses implied that the AND gate would put out a signal whenever both pulses arrived

within 9 ns of each other, a coincidence time much longer than the coherence time of the

downconverted light (less than 100 fs), which justifies the steps taken before Eq. (3.21)

above. Coincidence counts were recorded by computer for various lengths of quartz

inserted into the beam. The maximum length of quartz available was 12 mm,
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corresponding to a relative delay of = .384 ps . This was more than enough to cover

the dip width of − = .152 ps  expected for our BBO crystal.

3.3.2 Results

3.3.2.1 Data taken with the broadband pump

The coincidence counts registered as a function of   are shown in Figure 3.7

(a), along with the theoretical curve corresponding to = 34.5 ps−1 , o = .061 ps, and

e = .213 ps  (corresponding to the range of pump wavelengths ∆ p = 3 nm and BBO

crystal length L = .8 mm), so that − = 5.25. The theoretical curve has been

normalized to match the nominal counting rates for the data outside the dip. As

predicted, the two-photon interference visibility is not very good, with the minimum

counting rate equal to about half the rate outside the dip. The dip is not centered at

= 0 because it requires about 2.5 mm of quartz to correct for the temporal walk-off

separation between the signal and idler after traveling half the length of the BBO crystal,

− 2 = .076 ps .

3.3.2.2 Data taken with a narrowband pump

In keeping with our earlier discussions of the role of pump bandwidth, Figure

3.5 indicates that if the product −  is reduced, the visibility of the dip is improved as a

consequence of the smaller range of frequencies contributing to the integral in (3.22).

To check this, we inserted the filter F1 into the pump. The .8 nm range of wavelengths

transmitted by F1 corresponds to a pump bandwidth of = 9.2 ps −1 , so that the

bandwidth / temporal walk-off product is − = 1.40 . The data are presented in Figure

3.7 (b), together with the theoretical counting rate for these parameters. The predicted
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Figure 3.7 Experimental data and joint emission amplitude spectrum seen by the
detectors for pump bandwidths of 3 nm (a) 0.8 nm (b), and 3 nm with 10 nm bandpass
filters in front of the detectors (c). Data reproduced from [12],  spectra from [16].
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improvement in the fourth-order visibility is borne out by the data, although in both

cases the measured minimum counting rates are higher than expected from the theory.

3.3.2.3 Data taken with the broadband pump and detector filters

Finally, we recorded coincidence counts with the broad pump bandwidth

restored, but with the spectral filter F2 inserted to restrict the range of signal and idler

wavelengths that reached the detector. These counts are shown in Figure 3.7 (c). The

photon pairs that emerged from this filter were much less spectrally distinguishable

from each other in principle (see Section 4.2.3.2), and the result was a much improved

interference dip, although the counting rates were significantly reduced.

3.4 Discussion

3.4.1 Comparison of spectral filtering in pulsed vs. cw experiments

The use of spectral filters is not uncommon in this type of experiment, in which

a coincidence rate is measured for different values of the relative delay between the

signal and idler [1,10]. However, the earlier experiments differed from the present one

by their use of cw pumping; in that case, the filters are not needed for high visibility in

principle (see Section 4.1.2.), either in the type-I or type-II case. For those experiments,

the filters were helpful in a practical sense, in that they increased the coherence times of

the photons, which relaxed the stability requirements, but the minimum coincidence rate

is predicted to reach zero for those cases even without spectral filtering. As seen in

Figure 3.3, this is a consequence of the fact that the cw-pump “window” does not

reveal the asymmetric character (if any) of the phase-matching function, so that the

spectral two-photon emission amplitudes S signal , idler( )  are always symmetric under
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exchange of their arguments; this renders the photon pairs spectrally indistinguishable

even without filters.

In contrast, the downconversion filter was required for good visibility in our

experiment with the broadband pump source. In this case, the spectral filtering

constituted a kind of “quantum erasing” of the distinguishing spectral information

after it had been created, in that the most distinguishable pairs were discarded before

they reached the detectors. The part of the two-photon spectrum which survives this

filtering is the part that appears the most symmetric under exchange of o  and e, as

shown in Figure 3.7 (c).

3.4.2 Interpretation of the results

From the evidence presented above it is clear that one must proceed with caution

when performing quantum interference experiments with ultrafast-pumped type-II

downconversion. As in any fourth-order interference experiment, the visibility is directly

dependent on the indistinguishability in principle of the interfering two-photon detection

processes. For the HOMI, this indistinguishability is expressed by the symmetry of the

two-photon emission amplitude, S o , e( ) , under exchange of its arguments. The

consequence of pumping a birefringent type-II medium with a broadband pump pulse is

to create an emission source which does not obey this symmetry very well. The effects

of this asymmetry on the interference “dip” visibility are evident in our data.

We also showed that the interference may be restored by spectrally filtering the

pump pulses, which is tantamount to moving towards cw-pumping: the smaller the

bandwidth allowed for the pump, the better will be the dip visibility. But the

consequence of this is that the pump pulses are extended in time, so that the benefits of

synchronization for multiple sources may be lost.
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Finally, we showed that interference visibility may be recovered if the

downconverted light is filtered before it reaches the detectors. Here again, the narrower

the passband of the spectral filters, the longer the temporal extent of the signal and idler

wavepackets. While this might be helpful when one wishes to synchronize the emission

from multiple sources, the coincidence count rates are then considerably reduced.

In the next chapter we will take up another solution to the problem of reduced

visibility in the type-II HOMI, in which the emission spectrum is symmetrized at the

source. This method allows us to recover the dip interference visibility without loss of

timing resolution or reduced counting rates.
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Chapter 4

Engineering spectral indistinguishability

4.1 Introduction

In the previous chapter, we saw that the visibility of two-photon interference in a

Hong-Ou-Mandel interferometer was reduced when the interferometer was based on

type II downconversion pumped by a train of ultrafast pulses. This reduction in

visibility was attributed to the presence of spectral information in the two-photon

wavepackets, which served as a “which-path” identifier for the double-detection

process. The two double-paths which could lead to a coincidence count (double

reflection or double transmission) were rendered almost completely distinguishable, and

hence, incapable of effectively interfering with each other. In those cases, what allowed

us to identify “which path” was actually the asymmetric character of the joint emission

amplitude spectrum for the downconversion, S o, e( ) . We saw that if this function was

made more symmetric, by narrowing the pump bandwidth or by restricting the

photodetectors to look only at the most symmetric region of the spectrum, the

interference “dip” visibility could be restored.

However, because both of these methods use narrow bandwidth filters, which

have the effect of lengthening the pulses, they eliminate most of the precise timing

information that is the main reason for using ultrafast pulses in the first place.

Additionally, the counting rates suffer substantial losses after the light has been

attenuated by these filters. This makes filtering an even more unattractive solution to the

problem.
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The new approach, then, is this: rather than throw away the parts of the emission

which are not symmetric, we could attempt to symmetrize the entire joint emission

amplitude spectrum for all the pairs at the source. The asymmetry arises from the

different dispersion characteristics for the e-ray and the o-ray within the

downconversion medium: these are crystal properties which we are not at liberty to alter.

But we can make use of the fact that for any function of two variables g x , y( ) , it is

always possible to construct the function

′ g x, y( ) = g x, y( ) + g y, x( ) , (4.1)

which is symmetric under exchange of the arguments x  and y  by definition, regardless

of the symmetry properties of g x , y( ) . Symmetrizing the joint amplitude emission

spectrum in this manner implies adding a second downconversion process to the first

one, with the signal and idler polarizations exchanged, so that the total amplitude for

emission from the system is governed by the new, symmetric joint amplitude emission

spectrum

′ S s , i( ) = S s, i( ) + S i , s( ) . (4.2)

Note that if we want the emission amplitudes to add like this, we must add the second

process to the first in such a way that it is ultimately impossible to distinguish which of

the two downconversion processes generates each photon pair (see Figure 4.1). This

coherent addition was carried out in the laboratory, and new interference data were

collected for the downconverted pairs having the new emission spectrum. The result was

that the interference “dip” visibility for these new photon pairs was significantly

improved, without any reduction in counting rates or bandwidth.
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Figure 4.1 Conceptual arrangement for the addition of two fields produced by

downconversion processes, in which the resulting photon pairs could have come from

either process with equal probability. The addition is coherent if the “which-process”

origin of the pairs cannot be determined even in principle; in this case, the photon pairs

carry a joint emission amplitude spectrum that is the superposition of the spectra for

each process (a). A scheme for producing this addition is shown in (b). A pump pulse

passes through the parametric downconverter (PDC) and is separated from the

downconverted light by means of a dichroic mirror MD2. The pump pulse is reflected

back into the PDC by mirror M1. The signal and idler beams are also reflected back via

M2, with their polarizations exchanged by the λ/4 plate. The photon pairs which

ultimately emerge from the downconverter could have been generated on either the first

or second pass of the pump through the crystal. The downconversion from this

modified source is separated from the outgoing pump beam by MD1 and sent through

a collinear Hong-Ou-Mandel interferometer to a pair of photodetectors, which produce

coincidence counts.

+ e iθθθθ
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4.2 Schematic and theory

4.2.1 Schematic of the experiment

The coherent addition depicted in Figure 4.1 (a) can be accomplished

experimentally by using the scheme shown in Figure 4.1 (b). The pump pulse enters the

parametric downconverter (PDC) from the right, possibly creating an orthogonally

polarized, frequency degenerate pair of photons somewhere inside. After exiting the

PDC, the pump is reflected by a dichroic mirror (MD2), while the lower-wavelength

downconverted light is transmitted through it. The pump is normally incident on a

mirror (M1) that reflects it back into the PDC. The signal and idler, meanwhile, are sent

through a λ/4 plate and then onto a mirror (M2) at normal incidence. They are then

reflected back through the λ/4 plate and into the PDC, overlapping with the pump pulse

in the center of the crystal.

The λ/4 plate is oriented with its optical axis at 45 degrees to the “o” and “e”

axes of the PDC. After their first pass through this plate, the polarizations of the signal

and idler photons are converted from linear o and e to circular LHC and RHC states,

respectively. After reflection from M2, these circular signal and idler polarizations are

then converted to e and o linear polarizations, respectively, by passing the light through

the λ/4 plate a second time. The net result is a 90 degree rotation of both the signal and

idler polarizations, effectively exchanging their roles as the e and o polarized photons.

As a result, the e-polarized light that is sent back into the downconverter actually carries

the spectrum belonging to the original o polarization, and vice versa; more generally, the

joint emission amplitude spectrum for these pairs is switched from S o , e( )  to

S e , o( ) . Interestingly, this switch also has the effect of canceling the temporal walk-

off for photon pairs emitted near the center of the crystal: the photon with the fast o

polarization on the way out will have the slow e polarization on the way back in.
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This system functions as a Michelson interferometer, with the dichroic mirror

MD2 playing the role of the central beamsplitter, separating and recombining the “red

arm” and “blue arm.”  Here, though, the interfering pathways begin and end at the

center of the PDC, not at the beamsplitter. With the arms properly aligned, and with

their optical path lengths balanced to within the coherence time of the pump, it becomes

impossible in principle to discern whether the downconverted light that ultimately

emerges from the PDC is generated from the first or the second pass of the pump pulse

through the crystal. The resulting o and e-polarized photon pairs therefore carry a

superposition of the joint emission amplitude spectra for each process, given by

′ S o , e( ) = S o , e( ) + ei S e , o( ) , (4.3)

where S o , e( )  refers to the fields generated on the first pass, S e , o( )  to those

generated on the second, and

  = ks s( )l signal + ki i( )lidler − kp p( )lpump (4.4)

is the total phase difference between the pairs generated on the first or second pass.

This phase difference can be varied by changing   l pump , the length of the blue arm. For

suitable values of  (  0,±2 ,K) the joint emission amplitude spectrum can be made

symmetric in accordance with (4.2).

After emerging from the PDC, the downconverted photons are separated from

the pump with another dichroic mirror and sent into the common-path Hong-Ou-

Mandel interferometer. This consists of a controllable birefringent delay line ( ), a λ/2

plate, a polarizing beamsplitter (PBS), and a pair of photodetectors (DA, DB). The x-

polarized photon is delayed by an amount  relative to the y-polarized photon before

entering the PBS. The λ/2 plate rotates both the x and y polarizations by 45 degrees:

each photon may then be either reflected or transmitted at the PBS, with equal
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probability. A coincidence count at the detectors could have come from transmission of

the x and reflection of the y, or reflection of the x and transmission of the y-polarized

photons. As in the previous chapter, these two coincidence processes can interfere with

each other, producing a “dip” in the coincidence counting rate as → 0 .

4.2.2 Quantum state of the light

The quantum state describing the photon pairs created by a single pump pulse

can be obtained in the same fashion as in the previous chapter, but using a two-stage

evolution in the interaction picture to describe the first and second downconversion

processes1. The state of the downconverted light emerging from the PDC is then

= vac + o + e( )Φ o , e( ) o x e y
− ei

o y e x[ ]
e

∑
o

∑

= vac + 1( ) ,

(4.5)

where we now use the labels x and y to denote the two orthogonally polarized output

modes, but retain the e and o labels for the frequencies.  is as defined in (4.4); for the

moment, we will treat  as being frequency-independent over the bandwidth of the

signal, idler, and pump photons. As always, the dimensionless creation efficiency

parameter  is defined by

  
≡

gV0l xl yl z

ih
(4.6)

where   l x ,ly ,l z  are the dimensions of the interaction region, V0

2
 is the peak intensity of

the pump pulse, and g is a coupling constant between the pump and downconversion

modes. Once again, we are restricting our calculations to the “nondepleted pump”

regime, in which we assume

                                                
1 See reference [1]. For an explicit derivation of this state and its normaliation, see Appendix C.
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2 1( ) 1( ) << 1 . (4.7)

As in the previous chapter, the spectrum of a single pump pulse is assumed to have a

normalized gaussian form with bandwidth σ, centered on the frequency 2 ,

o + e( ) =
2

e
− o + e − 2 

  
 
  

2

, (4.8)

while the phase-matching function is given by

Φ o , e( ) = sinc ko o( ) + ke e( ) − kp o + e( )[ ] L

2
 
 
  

 
 . (4.9)

4.2.3 Predicted counting rates

4.2.3.1 Single-channel counts

Our experiment measured both single-channel and coincidence counts as the

quartz delay  and phase  were varied; we will begin here by calculating the single-

channel counting rate at detector DA as a function of these two parameters. For a single

pump pulse, the probability that detector DA registers a photon wihin a time interval dt

around the time t is pA t( )dt , with the instantaneous probability density given by

pA t; ,( ) = ˆ E A
−( ) t( ) ˆ E A

+( ) t( ) = ˆ E A
+( ) t( )

2

. (4.10)

Here EA

2
 is in photons per second, and we are assuming perfect detection efficiency

for DA.

As in Chapter 4, we may rewrite the instantaneous field operator at the detector

as a Fourier decomposition of the polarization components of the signal and idler

modes projected onto DA by the λ/4 plate and PBS:

ˆ E A
+( ) t;( ) =

2
1
2

ˆ a x ( )ei + ˆ a y ( )[ ]e− i t∑ . (4.11)
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Substituting (4.11) and the state (4.5) into (4.10) and carrying out the action of each

annihilation operator onto the state yields

pA t; ,( ) =
2( )3

4 o + e( )Φ o , e( )
e

∑
o

∑

× e−i o t −( )
e y

+ e−i e t
o x

− ei e−i e t −( )
o y

− ei e−i o t
e x{ } 2

(4.12)

for the instantaneous probability density. The total photodetection probability

accumulated over all times is

PA ,( ) = dt
−∞

∞

∫ pA t; ,( ). (4.13)

Substituting (4.12) into (4.13) and carrying out the required Hermitian conjugation and

integration gives the result

PA ( ) = 2
2 B − K cos( ){ } (4.14)

where, in the limit → 0 ,

B ≡ d od e

0

∞

∫
0

∞

∫ o + e( ) 2
Φ o , e( ) 2

=
4 2

−

(4.15)

and

K ≡ d od e

0

∞

∫
0

∞

∫ o + e( ) 2
Φ∗

e , o( )Φ o , e( )

= 2B
2

o + e( )
 

 
 

 

 
 erf o + e( )

4 2

 

 
 

 

 
 

(4.16)

is the degree of spectral overlap for the photons created in the two downconversion

processes. Once again, o = L
kp

2

−
ko

 

 
 

 

 
  is the maximum difference between the

group delays experienced by the pump pulse and the o-wave (after traveling the entire
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length of the PDC), e  is the analogous quantity for the e-wave, and − ≡ e − o  is the

maximum group delay between o-wave and the e-wave.

Note that if Φ o , e( ) were completely symmetric, then K would equal B by

definition, and the visibility of the single-channel interference governed by (4.14) would

be 100%.  Once again, we see a case in which interference visibility is reduced as a

consequence of the asymmetry of Φ o , e( ). This will be discussed in more detail in

section 5.4.3, after the experimental results are presented.

From (4.14) we can see that the measured rate of single-channel counts at our

imperfect detector DA in the laboratory will be

RA( ) = A ARp

2
2 B − K cos( ){ } (4.17)

where A  is the quantum efficiency of DA, A  is the fraction of emitted photons which

is transmitted through the optics to DA, and Rp  is the repetition rate of the pump pulses.

The above expression can be rewritten as

RA( ) = RA 0

1

2
−

K

2B
cos( )   

   

= RA 0

1

2
−

2

o + e( )
 

 
 

 

 
 erf o + e( )

4 2

 

 
 

 

 
 cos( )

 
 
 

 
 
 

(4.18)

where

RA0 = 4 A ARp

2
B  (4.19)

is twice the mean counting rate at DA.

The single-channel counting rate at DB is computed in exactly the same fashion,

starting with a field operator representing the horizontally polarized output of the PBS:

ˆ E B
+( ) t;( ) =

2
1
2

ˆ a x ( )ei − ˆ a y ( )[ ]e− i t∑ (4.20)
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 The result is

RB( ) = RB0

1

2
−

K

2B
cos( )   

   

= RB0

1

2
−

2

o + e( )
 

 
 

 

 
 erf o + e( )

4 2

 

 
 

 

 
 cos( )

 
 
 

 
 
 

(4.21)

where

RB0 = 4 B BRp

2
B (4.22)

 is twice the mean counting rate at DB.

4.2.3.2 Coincidence counts

Finally, we will calculate the rate of coincidence counts. For a single pump

pulse, the probability that DA registers a photon within a time interval dtA  centered at

time tA and that DB registers a photon within dtB  centered at tB is pAB tA ,tB( )dtAdtB . The

instantaneous probability density pAB  is given by the normally ordered expectation

value

pAB tA ,tB; ,( ) = : ˆ E A
−( ) tA( ) ˆ E A

+( ) tA( ) ˆ E B
−( ) tB( ) ˆ E B

+( ) tB( ) :

= ˆ E A
+( ) tA( ) ˆ E B

+( ) tB( )
2

.
(4.23)

Substituting (4.11) and (4.20) into this, and carrying out the annihilation operations

onto the state in (4.5) gives

pAB tA ,tB; ,( ) =
2( )4

4( )2 o + e( )Φ o , e( )
e

∑
o

∑

× e
−i o t B −( ) + et A[ ] − e

−i o t A −( )+ et B[ ]( ){
+ei e

− i e t A −( )+ otB[ ] − e
− i e t B −( ) + o tA[ ]( )} vac

2

(4.24)
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As in the previous chapter, we obtain the total probability for a coincidence count by

integrating pAB  over all possible photon arrival times within the coincidence resolving

time, and extending the limits of these integrations to ±∞ :

PAB ,( ) = dtAdtB pAB tA ,tB; ,( )
−∞

∞

∫
−∞

∞

∫ (4.25)

After performing these integrations and taking the limit → 0 , we arrive at the result

PAB ,( ) = 2
B − K cos( ) + C( )cos( ) − D( ){ } (4.26)

where B is given by (4.15), K by (4.16),

C( ) = d od e

0

∞

∫
0

∞

∫ o + e( ) 2
Φ o , e( ) 2

e− i o − e( )

= 2B
1
2

−
−

 
 
 

 
 
 e

− o + e( )
2 −

 

 
 
 

 

 
 
 

2

rect ;
− −

2
, −

2
 
 
  

 
 

(4.27)

and

D( ) = d od e

0

∞

∫
0

∞

∫ o + e( ) 2
Φ∗

e , o( )Φ o , e( )e−i e − o( )

= 2B
2

o + e( ) erf o + e( )
2 2

1
2

−
−

 
 
 

 
 
 

 

 
 

 

 
 rect ;

− −

2
, −

2
 
 
  

 
 

(4.28)

Using the relations above and multiplying by the appropriate detector and collection

efficiencies along with the pulse repetition rate gives
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RAB ,( ) = RAB0

1

2
− cos( ) 2

o + e( ) erf o + e( )
4 2

 

 
 

 

 
 

 
 
 

+ cos( ) 1

2
−

−

 

 
 

 

 
 e

− o + e( )
2 −

 

 
 
 

 

 
 
 

2

rect ;
− −

2
, −

2
 
 
  

 
 

− 2

o + e( ) erf o + e( )
2 2

1
2

−
−

 
 
 

 
 
 

 

 
 

 

 
 rect ;

− −

2
, −

2
 
 
  

 
 

 
 
 

(4.29)

 where

RAB0 = 2 A B A BRp

2
B (4.30)

is the mean coincidence counting rate for > − 2  (outside the shallow “trough”

structure). A plot of RAB ,( ) is shown in Figure 4.2 (a) , with RAB0 =1. For the

fixedvalue = , we expect to see the modified “dip” structure shown in Figure 4.2

(b) (solid line); theoretically, the coincidence rate can fall to zero as → 0 , indicating

full recovery of the quantum interference of the photon pairs. For the fixed value = 0 ,

we expect to observe a “peak” structure as → 0  (Figure 4.2 (b), dashed line). As 

is varied while  is kept fixed, sinusoidal interference fringes between the “peak” and

“dip” values are expected. For = 0, these fringes should have 100% visibility, and

should be 180 degrees out of phase with the single-channel fringes predicted by (4.14).

These out of phase “peak” to “dip” fringes are generated by the third term in (4.29),

given by (4.27). As  is shifted away from zero, the magnitude of this term rapidly

diminishes due to its narrow gaussian character, and the visibility of the fringes is

reduced; they remain out of phase with the single-channel fringes until the crossing

point where δτ satisfies

1

2
−

−

 

 
 

 

 
 e

− o + e( )
2 −

 

 
 
 

 

 
 
 

2

=
2

o + e( ) erf o + e( )
4 2

 

 
 

 

 
 . (4.31)
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Figure 4.2 (a) The coincidence counting rate RAB δτ θ,( ) shows sinusoidal modulation as

θ is varied, with a visibility that depends on the value of δτ. For fixed values of θ, the

variation with δτ is a modified version of the familiar type II Hong-Ou-Mandel “dip”

structure. In particular, the value θ π=  leads to coincidence counts that dip all the way

to zero (b, solid line).Figure (c) is a close-up of the dip region. Plots were made for

RAB0 1=  using the parameters of the actual experiment: σ = −34 5 1. ps ,τ o = .38ps,

andτ e = 1 33. ps
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At this point, the third term in (4.29) has diminished to the same magnitude as the

second term, which has a small value independent of  and gives rise to fringes which

are in phase with the single-channel counts. At the crossing point, these two terms

cancel each other and there is no net fringe visibility whatsoever.  For even larger 

values, the second term dominates to produce low-visibility fringes in phase with the

single-channel counts; for =  this region corresponds to the familiar “trough” in the

fourth-order interference, presented in the last chapter.

4.2.4 Dispersion in the Michelson interferometer

4.2.4.1 Eliminating dispersion

Underlying all of the calculations above is the assumption that , the relative

phase between process 1 and process 2, is a frequency-independent quantity. This

approximation allowed the factor ei  to be treated as a constant multiplier for the

integrals in (4.16) and (4.27), which simplifies the calculations. However, this

assumption is not strictly correct, as we can see by expanding (4.4) in a Taylor series

about the mean signal, idler, and pump frequencies:

  

s , i( ) = ks s( )ls + ki i( )l i − kp s + i( )lp

= ks( )l s + ki ( )l i − kp 2( )l p[ ]
+ s −( ) ′ k sls + i −( ) ′ k ili − s + i − 2( ) ′ k plp[ ]
+

1

2 s −( )2
′ ′ k sls +

1

2 i −( )2 ′ ′ k ili −
1

2 s + i − 2( )2
′ ′ k plp

 
  

 
  

(4.32)

where ′ k s ,i ≡
ks, i , ′ k p ≡

kp

2

, ′ ′ k s,i ≡
2ks, i

2 , and ′ ′ k p ≡
2kp

2

2

. The first bracketed

term depends only on the mean frequency of the downconversion, and not on the
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particular signal and idler frequencies which are ultimately detected. The second and

third terms, however, exhibit linear and quadratic frequency dependence. Labeling these

terms as 0( ) , 1( ) , and 2( ) , respectively, we may write

s , i( ) = 0( ) + 1( )
s , i( ) + 2( )

s , i( ) . (4.33)

To determine whether the frequency-independent phase approximation ≅ 0( )  is valid,

we must investigate the relative magnitudes of these terms.

Starting from the center of the crystal, the light accumulates the total phase

difference as the signal, idler, and pump beams traverse their respective paths in the two

arms of the interferometer, including propagation through dispersive media (see Figure

4.3). Due to the polarization rotation induced by the λ/4 plate, the signal and idler

beams each spend half their time in the interferometer with o polarization, and half their

time with e polarization. The zero-order phase difference for the beams returning to the

center of the crystal is therefore

  
0( ) = ko( )lo + ke( )le − kp 2( )lp +

c
Lo + Le − 2Lp( ) (4.34)

The first three terms in (4.34) represent the accumulated phase difference within the

various dispersive elements: the BBO downconversion crystal, the fused silica dichroic

mirror, and the BK-7 glass slide.2 The free-space propagation lengths for the o and e

downconversion beams are labeled Le and Lo, and are identical and fixed;  the free-space

length for the pump Lp depends on the position of the pump mirror M1. We see that if

Lp is changed by a length L, the resulting change in 0( ) will be

∆ 0( ) = ∆L
2

c
= 2

∆L

p

 . (4.35)

                                                
2 The λ/4 plate, consisting of a thin piece of quartz (<1mm), is expected to contribute a negligible
amount of dispersion and is omitted from these calculations.
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 PDC
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λ/4
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(Fused Silica)
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Le Lo,

Lp

le , lo
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Figure 4.3  The signal and idler photon pairs accumulate a frequency-dependent phase-

shift relative to the pump pulse as each color travels differently through dispersive

elements in the Michelson interferometer.
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We therefore expect the interference fringes in the coincidence and single-channel

counting rates to be governed by the mean pump wavelength p = 405 nm .

The first-order phase difference is

  

1( )
o , e( ) = o −( ) ′ k olo + e −( ) ′ k el e − o + e − 2( ) ′ k plp

+ o −( ) Lo

c
+ e −( ) Le

c
− o + e − 2( ) Lp

c

(4.36)

where ′ k o, e, p  now refer to the inverse group velocities within all the various dispersive

media in the interferometer. This can be written more simply as

  

1( )
o , e( ) = o + e − 2( ) 1

2
′ k olo + ′ k ele − 2 ′ k pl p( ) +

1

2c
Lo + Le − 2Lp( ) 

  
 
  

= o + e − 2( ) ′ 
(4.37)

where ′ is not a phase, but is a frequency-independent coefficient which depends on

the dispersive elements and path lengths in the interferometer. For an appropriate choice

of Lp, ′ can become zero, eliminating all of the first-order frequency dependence in .

This is equivalent to balancing the path lengths in the interferometer to within the

coherence length of the pump. Averaged over the range of pump frequencies o + e ,

the change in 1( )  due to a change in  Lp by a length L is

  
∆ 1( )

o + e

=
o + e − 2

o + e

2c
∆L = 2

∆L

Lp

, (4.38)

where 
  
Lp = 2

c
≈ 50 m  is the coherence length of the pump pulse.

After similar simplifications, the second-order phase difference may be written

  

2( )
o , e( ) = o −( )2 + e −( )2( ) 1

4
′ ′ k olo + ′ ′ k el e( ) 

  
 
  − o + e − 2( )2 ′ ′ k plp

2

 
  

 
  

= o −( )2
+ e −( )2( ) ′ ′ oe − o + e − 2( )2

′ ′ p

(4.39)
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with ′ ′ k o, e ≡
2ko ,e

2  and ′ ′ k p ≡
2ke

2

2

 representing the group velocity dispersions for

each of the various media; the products   ′ ′ k l  are understood to be summed over the path

lengths traveled within these media. Again, the parameters ′ ′ oe  and ′ ′ p  are not phases, but

are coefficients which  reflect the total group velocity dispersion for the downconversion

and pump pulses, respectively. Unfortunately, no values of ′ ′ oe  and ′ ′ p  can be chosen

that will entirely eliminate 2( )  for all frequencies; however, we can choose values that

minimize (4.39) for the most likely downconversion frequencies in our experiment [1].

To do this, we note that the most likely pairs of frequencies are those which maximize

Φ o , e( ), by zeroing the argument of the sinc function in Eq. (4.9):

′ k o − ′ k p( ) o −( ) + ′ k e − ′ k p( ) e −( ) = 0 (4.40)

This expression can be used to eliminate o  or e in (4.39): it is then possible to

choose ′ ′ oe  and ′ ′ p  such that the remaining frequency dependence is zero. For our

interferometer3, this calculation revealed that 2( )  could be minimized by placing 2.04

mm of BK-7 glass into the pump arm. The plate C had an actual thickness of 1.58 mm,

which left some residual quadratic dispersion uncompensated in the experiment.

4.2.4.2 The consequences of dispersion

In practice, it is possible that some first order dispersion remains uncanceled if

the interferometer is not exactly balanced. In addition, as noted above, the quadratic

dispersion was not entirely canceled with the compensator plate C. To see the effects of

any residual first and second order dispersion, we need only replace our original

                                                
3 5 mm BBO crystal, .25” fused silica dichroic (oriented at 45o for an effective length 7.27 mm)
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parameter  by its expansion (4.33) in the quantum state (4.5), and recompute the

quantities of interest. The new single pulse coincidence probability is given by

PAB , 0( ) , ′ , ′ ′ oe , ′ ′ p( ) = 2 B − KD ′ , ′ ′ oe, ′ ′ p( ) cos 0( ) + arg KD ′ , ′ ′ oe, ′ ′ p( )( )( ){
+ CD , ′ , ′ ′ oe, ′ ′ p( ) cos 0( ) + arg CD , ′ , ′ ′ oe, ′ ′ p( )( )( )
−D( )}

  (4.41)

where B and D remain as defined in (4.15) and (4.28). The new dispersion-dependent

quantities are

KD ′ , ′ ′ oe , ′ ′ p( ) = d od e

0

∞

∫
0

∞

∫ o + e( ) 2
Φ∗

e , o( )Φ o , e( )

×e
i o + e −2( ) ′ + o −( ) 2 + e −( ) 2( ) ′ ′ oe − o + e −2( ) 2 ′ ′ p{ }

(4.42)

and

CD , ′ , ′ ′ oe, ′ ′ p( ) = d od e

0

∞

∫
0

∞

∫ o + e( )2
Φ o , e( ) 2

e− i o − e( )

×e
i o + e − 2( ) ′ + o −( )2 + e −( ) 2( ) ′ ′ oe − o + e − 2( ) 2 ′ ′ p{ }

. (4.43)

After some manipulation, the first of these quantities may be rewritten as

KD ′ , ′ ′ oe , ′ ′ p( ) = 2B −

o + e

 

 
 

 

 
 

i

4 ′ ′ oe

× I0
+ + I1

+ + I0
− + I1

−{ } (4.44)

where

I0,1
± ≡ dze

−i − z( ) 2

8 ′ ′ oe erf
o + e( ) 1 − z( ) ± 2 ′ 

2
8

2
+ 2i 2 ′ ′ p − ′ ′ oe( )

 

 

 
 
  

 

 

 
 
  

0,1

1±
2 ′ 

o + e⌠ 

⌡ 

 
 
  

. (4.45)

The remaining quantity can be expressed as
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CD , ′ , ′ ′ oe, ′ ′ p( ) = 2B −

2 2

 
  

 
  

1

′ ′ oe
2 2 ′ ′ p − ′ ′ oe( ) − 4i[ ]

× I2 (4.46)

where

I2 = dz 1− z( )e
− i

−

2
z− 

  
 
  

2

2 ′ ′ oe

−

o + e

2
z− ′  

   
   

  
 
  

2

8+ 2 i 2 2 ′ ′ p − ′ ′ oe( )

−1

1⌠ 

⌡ 
  . (4.47)

The resulting expression for the coincidence counting rate with dispersion is

RAB , 0( ) , ′ , ′ ′ oe , ′ ′ p( ) = RAB 0

1

2
− −

o + e

 

 
 

 

 
 

i

4 ′ ′ oe

× I0
+ + I1

+ + I0
− + I1

−{ }
 
 
 

×cos 0( ) + arg KD ′ , ′ ′ oe , ′ ′ p( )( )( )

+ −

2 2

 
  

 
  

1

′ ′ oe
2 2 ′ ′ p − ′ ′ oe( ) − 4i[ ]

× I2

×cos 0( ) + arg CD , ′ , ′ ′ oe , ′ ′ p( )( )( )
−

2

o + e( ) erf o + e( )
2 2

1

2
−

−

 
 
 

 
 
 

 

 
 

 

 
 rect ;

− −

2
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2
 
 
  

 
 

 
 
 

(4.48)

A comparison with (4.29) reveals many similarities for the cases with and without

dispersion: the first and last terms in the expression are unchanged, and, as before, the

second and third terms are the only ones which depend on .  Recalling (4.35) and

(4.38), and assuming

   Lp >> p , (4.49)

we can regard small changes in Lp  (on the order of p ) as affecting 0( ) , but not ′ .

The factors arg KD ′ , ′ ′ oe , ′ ′ p( )( )  and arg CD , ′ , ′ ′ oe , ′ ′ p( )( )  then appear as fixed phase

offsets for the new interference fringes. The new expected coincidence rate is plotted in

Figure 4.4, as  and 0( ) are varied. The integrals (4.45) and (4.47) were computed



© 1998 David Branning

108

Figure 4.4 (a) With dispersion in   included, the coincidence rate RAB , ′ , ′ ′ oe , ′ ′ p( )
still displays sinusoidal variation with the zero order, frequency-independent phase 0( ) .

For 0( ) =  (b, solid line) the dip is wider than before, and does not fall to zero. Plots

were made using our best estimates for the parameters of the actual experiment:

= 34.5ps−1 , o = .38ps, e = 1.33ps , ′ = 0, ′ ′ oe = 2.95 × 10−4ps2 , ′ ′ p = 7.42 × 10−4ps2

RAB

0( )

(a)

 (ps)

RAB

 (ps)

(b)

(c)
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numerically, with the assumption that the interferometer was perfectly balanced so that

′ = 0, with values for ′ ′ oe  and ′ ′ p  representing the dispersion of the actual optical

elements in the experiment.

It is interesting to note what happens to this structure if the path lengths in the

interferometer are out of balance by an amount comparable to the coherence length of

the pump. In this situation, the first-order dispersion coefficient ′  is no longer zero. In

fact, the alignment procedure in the actual experiment may have allowed the pump

mirror M1 to be offset from the optimal path length balancing condition by as much as

10 µm. The effect of such an error is shown in Figure 4.5: the net result is a translation

of the central dip and peak structures away from = 0, and a slight reduction in the

dip visibility.

The shift in the dip indicates that in the collinear HOMI, some extra dispersive

material is needed to make the two coincidence processes indistinguishable -- i.e., to

make the signal and idler photons overlap perfectly before the λ/4 plate and PBS4. This

occurs because the total blue and red path lengths in the Michelson interferometer are

no longer balanced for pulses emitted from and returning to the center of the PDC;

instead, they are balanced for pulses emitted and returning to some other point within

the crystal. This implies a different amount of temporal walk-off, which is corrected by

the additional dispersive material in the HOMI. For these photons, the new dip position

is actually the one for which the net delay between signal and idler is zero.

                                                
4 In this experiment, the overlap of the signal and idler wavepackets at the beamsplitter implies the
indistinguishability of the resulting coincidence processes. This is not always the case, however. For
elucidation of this point, see reference [2]
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Figure 4.5  The effects of a -10 µm shift in Lp. In this case, the Michelson

interferometer is not balanced, and the first order dispersion term (nominally zero) has a

value of  ′ = −.033ps . There is a shift in the position of the dip away from = 0, and

a slight reduction in visibility.
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4.3  Experimental procedure and results

4.3.1 Apparatus

The experimental apparatus is depicted in Figure 4.6; it makes use of many of

the same optical elements as the experiments of the preceding chapter. Once again, an

ultrafast pump source for the spontaneous downconversion process was created by

frequency doubling the 810 nm output of a mode-locked Ti:sapphire oscillator with a .7

mm BBO crystal cut and aligned for type-I phase matching. And, as before, the

resulting 405 nm pulses were separated from the residual, undoubled 810 nm pulses by

means of a dispersion compensated prism sequence, before impinging onto the

downconversion crystal (PDC). This method delivered an average pump power of 330

mW, with a pulse repetition rate of 80 MHz. The measured bandwidth of the pump was

∆ p ≈ 3nm , implying = 34.5ps−1  and a coherence length   Lp ≈ 50µm , satisfying our

earlier assumption (4.49).

For this experiment, the downconversion crystal was a 5 mm piece of BBO, cut

and aligned for type-II phase matching. This represents a sixfold increase in the crystal

length from the one used in the preceding experiment, and from Figure 4.5 we can see

that this would ordinarily result in a poorer visibility for two-photon interference in the

HOMI. We chose this “shallower” trough to make the improvement in visibility for

the new symmetrized source more dramatic, as seen in Figure 4.2, so that it could be

easily spotted in the laboratory data.

The pump pulses were guided onto the PDC by means of a dichroic mirror

(MD1) that is reflective at 405 nm, but transmissive at 810 nm. After passing through

the crystal, the pump pulses were separated from the downconverted fields by reflection

at a second dichroic mirror (MD2), and sent to another mirror (M1) mounted on a

piezoelectric transducer (PZT) and a motorized translation stage. M1 was aligned for
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Figure 4.6  Schematic of the new collinear Hong-Ou-Mandel interferometer. This

arrangement is almost identical to the one shown in the previous chapter, but contains

two important modifications: the downconversion crystal is 6 times longer, and a two-

color Michelson interferometer has been added to the downconversion region to

symmetrize the joint emission spectrum of the signal and idler pairs.
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normal incidence, to reflect the pump pulses back to MD2, and back into the

downconversion crystal for a second pass. Meanwhile, the first downconversion beams

passed through MD1, then through a quarter-wave plate (λ/4), and impinged onto

another mirror (M2) aligned for normal incidence. They were reflected back along their

paths through λ/4, MD2, and into the crystal. We attempted to balance the losses and

dispersion for the red arm by placing a compensator (C) in the pump arm. This was a

BK-7 glass slide with a neutral-density gradient along its length. The slide was mounted

on a translation stage, so that more or less transmissive parts of the slide could be

inserted into the pump beam until the intensities coming from the two arms were

equalized. As already mentioned, the 1.58 mm thickness also served to cancel most of

the second-order dispersion experienced by the signal and idler photons.

The phase difference  was varied by changing Lp with the PZT. A locking

system5 ensured the stability of the Michelson interferometer by sending negative

feedback to the PZT, so that  could be held constant while the photons were counted.

The locking system was able to keep Lp constant to within ∆L ≈ 20nm ; from (4.35)

this implies a stability in  of ∆ 0( ) ≈ 2 20 .

After its second pass through the PDC, the pump beam was again reflected at

the dichroic mirror MD1 and was sent back along its input path, ultimately to be

absorbed by a broadband red-pass filter (F). Meanwhile, the signal and idler photons

passed through MD1 and into the quartz delay line. To vary  , we used a set of 6

crystal quartz plates, 4 of thickness 1mm and 2 of thickness .5 mm. The plates remained

in the beam at all times, and were oriented with their fast axes aligned either to the e or o

polarization of the BBO crystal. Different combinations of orientations for the plates

resulted in different net delays between the signal and idler photons.  A fixed
                                                
5 The locking circuit and feedback technique were adapted from a design by Mike Noel [3]. For a
schematic of the circuit and notes on its operation, see Appendix D.
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compensator plate was also inserted to cancel the temporal walk-off in the BBO crystal,

so that pairs created in the center of the downconverter (in either process) would

experience only the net delay specified by . For a 5 mm piece of BBO, the

appropriate compensator was a 16.2 mm quartz plate with its fast axis oriented to the e

axis of the BBO.

After the quartz delay line, the photons passed through a zero-order half wave

plate (λ/2), a polarizing beamsplitter (PBS), and onto a pair of EG&G SPCM-200

avalanche photodiodes (DA and DB). The TTL electronic pulses from DA and DB were

inverted and sent to discriminators which generated uniform NIM pulses triggered on

the leading edge of each APD pulse. These pulses were then fed to a coincidence

counter which produced an output NIM pulse whenever the two inputs arrived within

200 ns of each other6. The single-channel and coincidence NIM pulses were counted

by an EG&G Ortec model 974 counter, under computer control via GPIB.

After aligning the system, we typically saw coincidence count rates of around

4000/sec with all apertures wide open. To improve the interference visibility, we closed

aperture AP to 2 mm and  AD to 1mm diameter. The mean single channel rates RA0  and

RB0  were then around 3000/sec, while the mean coincidence rate RAB0  was roughly

15/sec. From these numbers and the relations (4.19), (4.22), and (4.30) we find

A A = B B ≅ .01 (4.50)

and, with Rp = 8 ×107 ,

2
B ≈ 10−3 (4.51)

                                                
6 The coincidence counter was an “AND” gate that produced an output NIM pulse whenever both
inputs registered a “logical 1” ( -1.5V to -0.6V for the NIM standard.) The 200 ns coincidence window
is a result of convolving the two rectangular input pulses with each other; the first was of duration 150
ns, while the second was of duration 50 ns.
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which ensures that the nondepleted pump approximation (4.7) is well satisfied.7

4.3.2 Results

We collected photocounts for 11 different values of , covering the range

−0.16 ps < < 0.16 ps . For each value of , we recorded counts at 11 different 

values, producing interference fringes in both the single-channel and coincidence

counts. Counts were collected for 200 seconds at each  value. The total time for all

these scans was 9 hours. During that time, the laser power dropped steadily from its

initial value, and re-alignment was forbidden once the data collection began. Therefore,

the average pump power was measured during the course of each data taking interval, so

the drop in power could be divided out.8 The data presented and analyzed here have all

been re-normalized in this way.

Data for three values of  are shown in Figure 4.7. The dashed lines represent

the best fits of the data to sinusoidal curves. As predicted, the low-visibility coincidence

fringes for large   are in-phase with the single-channel fringes, while the high-

visibility coincidence fringe near the center is out of phase with the single-channel

fringes recorded there.

All of the coincidence data are plotted in Figure 4.8 as a function of  and . .

The data with positive  values were renormalized to account for a systematic error

related to the orientation of a particular quartz plate.9  The resulting picture is

qualitatively similar to the theory curves given in Figure 4.5, showing a gradual

improvement in interference visibility as   nears zero.
                                                
7 See Eq. (C.18) in Appendix C.
8 This solution to the problem is valid because RA0, RB0, and RAB0 all depend linearly on the pump
intensity, owing to the spontaneous nature of the downconversion.
9 The data for δτ>0 were all recorded with a particular .5 mm quartz plate oriented with its slow axis
aligned to the o polarization; the orientation was flipped for the δτ 0 scans, and the mean counting rate
for these data dropped by roughly 10%. The δτ>0 data were therefore renormalized by this 10% factor.



© 1998 David Branning

116

5000 6000 7000

1000

2000

3000

4000

-600000

-400000

-200000

0

200000

400000

600000

+3.98 mm

5000 6000 7000

1000

2000

3000

4000

-600000

-400000

-200000

0

200000

400000

600000

Locking diode translation (µm)

0 mm quartz

co
in

ci
de

nc
es

 in
 2

00
 s

ec
.

singles in 200 sec.

coincidences=
singles at DA<

singles at DB>

5000 6000 7000

1000

2000

3000

4000

-600000

-400000

-200000

0

200000

400000

600000

- 4.98 mm

Figure 4.7  Recorded coincidence and single-channel counts as a function of the pump

mirror displacement, for fixed values of δτ.  The counts have been renormalized to

eliminate the effects of laser power drifts. The pump mirror was displaced by translating

the pair of locking photodiodes through the fringe pattern generated by the HeNe (see

Appendix D). The interference visibility reached 64% for the case δτ = 0.
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Figure 4.8 (a)Compilation of all eleven renormalized coincidence fringes, recorded over

the range −0.16 ps < < 0.16 ps . Note the gradual transition of the fringe phases.

The theoretical prediction in (b) includes a -10µm shift in the position of M1.
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A maximum visibility of 64% was observed for the scan at = 0. The main

reason why this visibility was not 100% is that the losses in the Michelson

interferometer were not equal for the two arms, despite our efforts to balance them with

the pump attenuator C. Scans taken with each arm of the interferometer blocked

revealed that the red arm contributed a mean intensity of 959 ± 52 counts per 200

seconds, while the pump arm contributed 1348 ± 30 counts per 200 sec. The maximum

possible interference visibility allowed under these conditions is 71%. As we have seen,

our best estimates for the dispersion parameters in the interferometer also result in a

slight degradation of the interference visibility. The maxima and minima implied by the

sinusoidal fits for all 11 values of  are shown in Figure 4.9. The improvement in the

fourth-order interference with our symmetrized source is evident here, as the counting

rate in the center of the dip falls well below the dashed line representing the

unsymmetrized case. The solid line is the result of a theoretical calculation, including

dispersion and a -10 µm error in the position of M1, scaled to the mean counting rate

given by the sum of the red-arm and pump-arm contributions. The data appear to be in

good agreement with this calculation.

The minimum and maximum count values on these curves represent the

conditions 0( ) =  and 0( ) = 0, respectively, for values of  that lie between the

crossing points satisfying (4.31). Outside this range, the minimum count values must

correspond to 0( ) = 0, while the minima represent 0( ) = . The theory predicts a

sharp transition between these two regions, marked by an interference visibility of zero

at the crossing point. However, this sharp transition was not observed. Instead, our

coincidence data displayed a smooth phase drift as  increased -- evident in Figure 4.8

(a) -- while the phase of the single-channel fringes remained constant. The relative
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Figure 4.9  Extracted minimum and maximum coincidence counts as a function of δτ.

The solid line is a curve calculated for a pump mirror placement error of -10 µm, with

our best estimates of the dispersion and pump bandwidth parameters, and adjusted for

the measured unequal contributions from the two arms of the interferometer. The

dashed line represents the expected counting rate for the unsymmetrized source: the

data point on this line is the sum of the “red arm” and “pump” arm contributions

taken separately, without interference effects.

Branning
The theoretical curve on this plot is in error: the unequal contributions from the two arms of the Michelson interferometer were incorrectly taken into account for the generation of this curve. The corrected version appears in PRA _62_, 013814 (2000).
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phase of the coincidence and single channel sinusoidal fits is plotted in Figure 4.10 (a):

the relative coincidence phase appears to vary linearly with .

This phase drift is not predicted by our theory. A close inspection of (4.48)

does reveal that, in principle, the fringe attributed to the third term of the counting rate

will have an additional phase given by arg CD , ′ , ′ ′ oe , ′ ′ p( )( ) , allowing the possibility of

a -dependent phase shift. However, calculations showed that this shift is not

appreciable even with 100 times the amount of dispersion in our interferometer.

Furthermore, the magnitude of this term, which is generating the enhanced dip structure,

falls to zero fairly quickly, while the phase shift persists over the entire region of our

data. These points are illustrated in Figure 4.10 (b) - (d).

4.4 Discussion

4.4.1 Is the phase drift in the coincidence counts a systematic error?

It appears that our second-order dispersion theory is unable to account for the

smooth phase drift of the coincidence fringes. On the other hand, it is hard to imagine a

systematic error which could produce this trend. The interferometer remained locked at

all times in each of these regions, and the single channel fringes reflect this in the sense

that their phases did not drift from scan to scan; therefore, the systematic error would

have to produce the drift only in the phase of the coincidence counts. Additionally, the

phase drift never changed direction with regard to , despite the fact that the time order

of the scans for ≤ 0 was opposite that of the scans for > 0 ; therefore, it seems

more likely that the systematic effects are tied to the quartz plates themselves. But since

different sets of plates were changed each time to produce the various delays, one would

expect a quartz-related effect to produce essentially random phase changes with respect

to . Instead, the phase drift appears insensitive to how specific plates were oriented,
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Figure 4.10  (a) The phase of the coincidence fringes relative to the single-channel

fringes does not undergo a sharp transition as predicted by the dispersionless theory

(solid line), but instead varies smoothly with δτ over the range of our data. The only

term capable of generating such shifts in the theory with dispersion included is

CD oe pδτ θ θ θ, , ,′ ′′ ′′( ). The magnitude and phase of this term are plotted in (b), and the

effect Figure on the relative phase between coincidences and singles is shown in (c).

Figures (d) and (e) repeat these plots with the dispersion increased by a factor of ten.
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depending only on the total amount of quartz involved. Indeed, the two scans at = 0

yielded identical relative phases despite their different specific quartz plate orientations.

All of this leads us to doubt that the effect is a systematic one.

It is possible that a more detailed calculation, performed without the assumption

(4.49), might account for this effect. Alternatively, we note that a slow drift between the

“dip” and “peak values as the delay is varied was observed in another type-II

experiment with polarizers in front of each detector [4]; perhaps an analysis that allows

for some imperfections in the PBS, so that different polarizations may appear at the

detectors, would reveal the source of this phase drift.

4.4.2 Comparison with the experiments of Herzog, et el.

In many ways, the Michelson interferometer in this experiment is reminiscent of

several earlier experiments [5-7] conducted with a cw-pumped, type-I parametric

downconverter, in which the signal, idler, and pump beams were all reflected back into

the crystal for a second pass to produce interference in the signal and idler modes as the

pump phase θ was varied (see Figure 4.11).  However, our experiment is distinguished

from these by the use of an ultrafast pump source and type-II downconversion, by the

addition of the HOMI, and most importantly by the exchanging of the signal and idler

beams before they are reflected back into the crystal.  Furthermore, in the earlier

experiments the modulation in the coincidence rate was a direct consequence of the

modulation in the pair-creation rate, so that the coincidence and single-channel counts

were always in phase with each other as  was varied. A striking departure from this

situation occurs for our coincidence counting rate, which is out of phase with the single

channel counting rate in the dip region near = 0, and which exhibits a 64%
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θ

PDC

(a)

(b)

Figure 4.11 (a) Earlier experiments have demonstrated nonclassical interference effects

by reflecting signal, idler, and pump beams back into a type I cw-pumped

downconverter so that a second downconversion process could interfere with the first.

This leads to second-order interference at both the signal and idler photodetectors as θ
is varied, and (trivially) to fourth-order interference as the coincidences are monitored.

Unfolded in this way, our experiment (b) shares many of the same features, but displays

coincidence interference which is out of phase with the (reduced visibility) single-

channel interference.

θ

PDC
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modulation, while the single-channel (or pair-creation) interference visibility is less than

3%.

4.4.3 Interpretation of the interference terms

It is interesting to note that the single-channel detection probability in (4.14)

depends on , but not on . This is an indication that for the single-channel counts,

some degree of interference is taking place between the two different downconversion

processes, but not between the delayed (initially x -polarized) and undelayed (initially

y -polarized) photons. As such, we can label the interfering photons as being

“polarization distinct” but “process indistinct”. For example, it would be possible to

tell that one of these photons emerged from the PDC with, say, x  polarization, but it

would be impossible to discern whether this photon was created as an e-photon in the

first process, or an o-photon in the second. The interference between the two creation

processes for these photons is manifested by a modulation as  is varied.

In this light, it is easy to see why the second-order interference visibility

depends on the extent to which the spectra of the e and o polarized photons are similar.

The more symmetric S o , e( )  is, the more overlap there will be between the marginal

 single-photon spectra o( ) = d e

0

∞

∫ S o , e( )  and e( ) = d o

0

∞

∫ S o , e( ); that is, the

less often it will be possible to use the frequency of the detected light to discover

whether a definite x ( y ) polarized photon really started off as an e(o)-photon in process

1 or an o(e)-photon in process 2. As the e and o spectra become more similar, these two

processes become more and more indistinguishable, leading to a higher interference

visibility as more and more of the single photons become “process indistinct.”
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It is possible to interpret the coincidence count probability, (4.26), in a similar

fashion, keeping in mind that all the terms represent contributions arising from different

types of coincidence detection, or two-photon, amplitudes. Once again, the term

K cos( )  is the modulation term for events which are “process indistinct” but

“polarization distinct”. This term arises from the sets of two-photon amplitudes for

which both polarizations are knowable in principle, but the creation process is not. The

next term, C( )cos( ) , is the interference modulation for photon pairs which are both

“process indistinct” and “polarization indistinct”. This term arises from amplitudes

for the cases where no definite creation process could be assigned to the photon pairs,

and for which no definite polarization before the PBS could be assigned to either

photon arriving at the detectors. The final term, D( ) , is the modulation term for

photon pairs which are “process distinct” but “polarization indistinct”. This term

arises from amplitudes for the cases in which the creation process was identifiable in

principle, but the polarization of each detected photon before the PBS was not.

The last term represents the standard pulsed type II HOM interference seen in

the previous chapter, and produces a trough structure whose depth depends on the

symmetry of the joint spectral emission amplitude for each process taken separately.

The much lower counting rate in the central dip produced by C( )cos( )  is the

signature of improved interference visibility for the photon pairs with symmetrized joint

emission spectra. The degree to which our experimental data show this improved

visibility is a measure of the success of our “engineering indistinguishability” method.
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Chapter 5

Locality violations in the circular polarization basis

5.1 Introduction

5.1.1 Non-violations of Bell’s inequality

We now turn our attention away from complementarity, and investigate another

celebrated feature of quantum mechanics: nonlocality. As explained in Chapter 1,

nonlocality refers to the incompatibility of quantum mechanics with the Einstein-Podolsky-

Rosen axioms known as realism and locality [1]. This incompatibility is apparent from the

fact that quantum mechanics predicts a violation of Bell’s inequality [2], which must hold

true for any local-realistic hidden-variable (LHV) theories. In the years since Bell’s

discovery, numerous experiments have been undertaken to determine whether nature, too,

exhibits this nonlocal behavior. If violations of Bell’s inequality could be demonstrated

experimentally, it would end the search for a local-realistic theory capable of completing

quantum mechanics in the manner envisioned by Einstein [3].

To date, no such violations have been established in a loophole-free experiment: the

difficulty is that currently available detectors do not have high enough efficiencies for

conclusive experiments. However, the Clauser-Horne-Shimony-Holt (CHSH) form of

Bell’s inequality [4], which requires a supplementary “fair sampling” assumption, has

been shown to be violated in experiments with correlated pairs of photons from atomic

cascade sources [5-8] and from parametric downconverters [9-12]. Because the

supplementary assumption is a seemingly reasonable one, the results of these experiments

are taken by most researchers as strong evidence that the nonlocality inherent to quantum

mechanics is a fundamental property of nature, and, indeed, is a signature of the nonclassical

character of entangled systems.
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There are, however, at least two published examples of experiments whose results

appear to contradict the others, in the sense that they do not violate the CHSH inequality

[13,14]. In both of these experiments, the polarization correlations of photons generated by

an atomic cascade source were measured in the circular, rather than the linear, polarization

basis. The change of basis does not affect the predictions of quantum mechanics (as we

shall see), and should not prevent violations of the CHSH inequality. In the interest of

clarifying this situation, we performed a new measurement of these correlations with the aim

of either confirming or refuting the anomalous results.

5.1.2 The Clauser-Horne-Shimony-Holt inequality

The general arrangement required for an optical test of the CHSH inequality is

shown in Figure 5.1; the source in the center emits a pair of photons traveling in opposite

directions, whose polarizations are described by the rotationally-invariant entangled state

=
1

2
1 Ax 1 By − 1 Bx 1 Ay{ } . (5.1)

The polarizations of the two photons are measured by spacelike separated observers Alice

and Bob, who pass the light through polarizers (P) and onto photodetectors (D); the

detection of a photon with the linear polarizer P oriented at an angle    relative to some fixed

x-axis is taken to be a measurement of that photon’s polarization. Assuming perfectly

efficient detectors, the quantum mechanical prediction for the probability of measuring

polarizations A  at DA and B at DB when the photons are in the state given by Eq. (5.1) is

P A , B( ) =
1

2
sin2

B − A( ). (5.2)

The Clauser-Horne-Shimony-Holt inequality for the measured coincidence counting

ratesR A , B( ) is

R A , B( ) − R A , ′ B( ) + R ′ A , B( ) + R ′ A , ′ B( ) − R ′ A ,−( ) − R −, B( ) ≤ 0 , (5.3)
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QA QB

χ χθA θB

y

x

DA DBPA PB

Coincidence
Counter

Alice Bob

Figure 5.1. Experimental arrangement for measuring two-photon polarization correlations,

P A , B( ). A central source emits pairs of polarization-entangled photons, which are passed

through polarizers PA, PB, and detected at photodetectors DA, DB. Provided the subensemble

of detected counts is unbiased (the fair-sampling assumption), the measured coincidence

counting rate is indicative of the correlation function. Many experiments of this type have

demonstrated violations of the CHSH inequality.
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where A , ′ A , B and ′ B are any four polarization angles, and the dash −( )  indicates a joint

counting rate with a polarizer removed. This inequality can be derived from the axioms of

locality and realism if a supplementary assumption, the so-called “fair sampling

assumption,” is introduced. The assumption is that if a pair of photons emerges from Alice

and Bob’s polarizers, the probability of their subsequent joint detection is independent of

the orientations of the polarizers. This assumption allows us to identify the joint probability

in (5.2) for the ensemble of all emitted pairs with the measured relative frequency of joint

detections within the subensemble of all detected coincidence counts, so that

P A , B( ) =
R A , B( )
R −, −( ) , (5.4)

where

R −,−( ) = A BR0 (5.5)

is the rate of coincidence detections when both polarizers are removed and the source emits

pairs at the rate R0. Note that within this subensemble,

 P −,−( ) ≡ 1. (5.6)

Furthermore, because the space of transverse polarizations is a two-dimensional vector

space, we have the identities

P −,−( ) ≡ P A ,−( ) + P A , −( ) = P −, B( ) + P − , B( )
P A ,−( ) ≡ P A , B( ) + P A , B( )
P −, B( ) ≡ P A , B( ) + P A , B( ).

. (5.7)

Here we introduce the notation ≡ ± 2 to denote the linear polarization orthogonal to .

With the help of (5.4) - (5.7), the CHSH inequality may be rewritten as

S ≡ P A , B( ) − P A , ′ B( ) − P ′ A , B( ) − P ′ A , ′ B( ) ≤ 0. (5.8)
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For the particular choices

A = 0

B = 0 + 3 8

′ A = 0 + 3 4

′ B = 0 + 8

(5.9)

the form ofP A , B( ) given by quantum mechanics in (5.2) yields the result

S =
1

2
−

1

2
≈ 0.207 , (5.10)

in violation of (5.8).

5.1.3 Entangled states in the circular basis

Figure 5.2 shows the insertion of a pair of quarter-wave plates into the two photon

paths with their ordinary axes oriented at an angle = 4  to the x axis. These quarter-wave

plates connect the linear x and y-polarization modes at the polarizers ′ a x , ′ a y( )  to right-handed

and left-handed circular polarization modes at the source:

ˆ ′ a x =
1

2
ˆ a x + ˆ a y( ) −

i

2
ˆ a x − ˆ a y( ) = ˆ a R

ˆ ′ a y =
1

2
ˆ a x + ˆ a y( ) +

i

2
ˆ a x − ˆ a y( ) = ˆ a L

(5.11)

where the RHC and LHC modes may be written more simply as properly phased

superpositions of the linearly polarized modes X and Y:

ˆ a R =
1

2
ˆ a X − iˆ a Y( )

ˆ a L =
1

2
ˆ a X + i ˆ a Y( )

(5.12)

with inverse transformations
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θA θB

y

x

DA DBPA PBQA QB

Coincidence
Counter

χ χ
Alice Bob

Figure 5.2 Experimental arrangement for measuring two-photon correlations in the circular

basis. The quarter-wave plates QA, QB are inserted at an orientation = 4 , transforming

linear polarizations into circular ones and vice versa. The entanglement is preserved in this

basis, and the same violations of Bell’s inequality are predicted by quantum mechanics.

However, two early experiments performed with the plates inserted failed to demonstrate

violations of the CHSH inequality.
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ˆ a X =
1

2
ˆ a L + ˆ a R( )

ˆ a Y =
−i

2
ˆ a R − i ˆ a L( ).

(5.13)

For the right-hand side of Eqs. (5.11), the modes ˆ a X = ˆ a x + ˆ a y( ) 2 , ˆ a Y = ˆ a x − ˆ a y( ) 2

were chosen, but because of rotational invariance, X and Y can be any two orthogonal linear

polarizations in the definitions (5.12) and (5.13). In particular, we may choose X = x and

Y = y  so that the Hermitian conjugate of Eqs. (5.13) implies that the states before the

quarter-wave plates may be expressed in the circular basis as

1 x =
1

2
1 R + 1 L( )

1 y =
i

2
1 R − 1 L( ).

(5.14)

With these substitutions, the entangled state in (5.1) becomes

=
i

2
1 AR 1 BL − 1 AL 1 BR( )  . (5.15)

This expression for  has the same symmetric and entangled form as the one in the linear

polarization basis, and differs from it only by an inconsequential phase factor. Since

measurements of the linear polarizations ′ x  and ′ y  after the quarter-wave plates are actually

measurements of the L and R modes according to (5.11), the same violations of the CHSH

inequality should result when the plates are inserted [15]. It is this conclusion which makes

the earlier failures to observe violation the CHSH inequality under these circumstances

[13,14] so curious.
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5.2 Schematic and theory

5.2.1 Schematic of the experiment

A schematic of our experiment [16] is shown in Figure 5.3. Two photons are

emitted simultaneously with similar frequencies and polarizations1 from a type-I

spontaneous parametric downconversion source (PDC). The polarization of the signal

photon is labeled as x. The polarization of the idler photon is rotated to be orthogonal to x

by a suitably oriented half-wave plate (R0). The x and y-polarized photons are then incident

from opposite sides on beamsplitter (BS) at near-normal incidence.

The mixed beams emerge from BS traveling in almost opposite directions and enter

analyzer arms A and B. Each analyzer consists of a quarter-wave plate (QA, QB), a linear

polarizer (PA, PB), and a photodetector (DA, DB). Depending on the orientation (χA, χB) of

each quarter-wave plate relative to x, it may produce polarizations ranging from linear

(unchanged) to circular when the input light is linearly polarized; alternatively, if the input

light is circularly polarized, the output polarization may range from circular (unchanged) to

linear. Thus, a measurement of linear polarization after a suitably oriented quarter-wave plate

is actually a measurement of the input light in the circular polarization basis. The polarizers

are oriented at angles A  and B with respect to x, and pass the linear polarizations A  and

B  to the detectors. The coincidence counting rates R A , B( ) are measured for various

settings ( A , ′ A , B, ′ B) of the polarizers.

5.2.2 Quantum state of the light

Before the beamsplitter, the state of the light may be approximated with the

perturbative method of Chapter 1:

                                                
1 Though the signal and idler photons must propagate as ordinary waves inside the crystal, as demanded by
type-I phase-matching, they may emerge with different polarizations if the optic axis of the crystal is tilted
[17]. In this experiment, they are nevertheless made orthogonal by the half-wave plate (R).
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Figure 5.3 Schematic of the experiment for testing local realism in various polarization

bases. The idler polarization is made orthogonal to that of the signal with the help of the

rotator R0. The photons then impinge onto a beamsplitter with reflectivities and

transmissivities that are ideally equal in magnitude. The photons which emerge in arms A

and B each pass through a quarter-wave plate Q and a polarizer P before falling onto a

detector D.
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= vac + 1
s, x

1
i ,y

= vac + 1( ) .
(5.16)

Here we have suppressed the frequency labels and treated the downconversion process in

the single-mode approximation (see Appendix A). The signal and idler are assumed to be

degenerate in frequency. Only the second part, 1( ) , of the state  will contribute photon

counts.

At the beamsplitter, each photon may be transmitted or reflected independently of

the other, so that we may write [18]

1( ) = R 1 Ax + T 1 Bx( ) ′ R 1 By + ′ T 1 Ay( ). (5.17)

The labels A and B refer to the modes for arms A and B, and the complex transmissivities T ,

′ T  and reflectivities R , ′ R  characterize the beamsplitter BS 2. Note that this state is not an

entangled one, because it is a direct product of single-photon states. The product may be

expanded to yield

1( ) = R ′ R 1 Ax 1 By + T ′ T 1 Bx 1 Ay + R ′ T 1 Ax 1 Ay + T ′ R 1 Bx 1 By (5.18)

This is a pure state, representing four possible outcomes at the beamsplitter which must be

indistinguishable in principle from each other via auxiliary measurements. If it were

possible to distinguish which of these outcomes actually occurred for a given pair of

photons, say by measuring their relative arrival times at the detectors, or their frequencies,

the pure state 1( )  would have to be replaced by a density matrix representing the

(classical) probabilities of these outcomes, and no quantum interference effects would be

possible -- a fact which has been amply demonstrated by the preceding three chapters. For

this reason, frequency-degenerate downconversion must be used, and the optical paths of

the photon wavepackets to the beamsplitter BS must be equal to within the coherence time

of the detected light, as described in Chapter 2.

                                                
2 Because of the near-normal incidence of the photons onto the beamsplitter, we may assume that variations
of T and R  with polarization are negligible. Hence, we will not bother to distinguish between Tx, Ty, etc.
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All four of the amplitudes in (5.18) may contribute to the single-channel counting

rates at the detectors; however, the last two terms represent the cases in which both photons

end up in the same arm, and do not contribute to the coincidence counting rates. Thus,

coincidence counting has the effect of projecting the state onto the subspace in which one

photon is present in each arm. The (renormalized) projection of 1( )  onto this subspace is

S
1( ) =

1

R ′ R 
2 + T ′ T 

2
R ′ R 1 Ax 1 By + T ′ T 1 Bx 1 Ay{ } , (5.19)

which is an entangled state. It is this entanglement which allows the counting rates to violate

a Bell inequality,3 as we will now show.

5.2.3 Predicted counting rates

 According to quantum mechanics, the probability of detecting a pair of photons after

the polarizers within the subspace just described -- that is, given that there is a photon in

each arm --  is

PAB A , B( ) = S
1( ) ˆ a A

†
A( ) ˆ a B

†
B( ) ˆ a B B( ) ˆ a A A( ) S

1( )

= ˆ a B B( ) ˆ a A A( ) S
1( ) 2 (5.20)

where, for the moment, we assume the photodetectors are perfectly efficient. Here ˆ a A A( )
and ˆ a B B( )  are the annihilation operators for the modes reaching the detectors; due to the

action of the polarizers and quarter-wave plates, these operators may be written in terms of

the modes just after the beamsplitter as

ˆ a ( ) = cos −( )cos( ) − ei sin −( )sin( )[ ] ˆ a x

+ cos −( )sin( ) − e
i

sin −( )cos( )[ ]ˆ a y ,
(5.21)

                                                
3This approach is valid provided that the beamsplitter does not transmit or reflect individual photons
according to their particular values of those “hidden variables” which control their subsequent
photodetection; we are making a tacit “random beamsplitter” assumption here [19].
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where = A, B , the polarizers are taken to be ideal, and the  are the relative phase delays

between the ordinary and extraordinary waves imposed by the quarter-wave plates4. The

parameters   and χ together determine the basis (linear, circular, or elliptical) for the

polarization measurements. The operators ˆ a x , ˆ a y   are the annihilation operators for the

modes just after the beamsplitter. We then have

PAB A , B( ) = R ′ R cos A − A( )cos A( ) − ei A sin A − A( )sin A( )[ ] 
       ⋅ cos B − B( )sin B( ) − ei B sin B −( )cos B( )[ ] 
+T ′ T cos B − B( )cos B( ) − ei B sin B − B( )sin B( )[ ] 

⋅ cos A − A( )sin A( ) − ei A sin A − A( )cos A( )[ ] 2

        ⋅ R ′ R 
2 + T ′ T 

2( )−1

.

(5.22)

This may be simplified further if the beamsplitter is symmetric and characterized by the

values

R = ′ R = iT = i ′ T =
1

2
. (5.23)

Moreover, if the quarter-wave plates have the same orientation, A = B = , then the

coincidence probability reduces to

PAB A , B( ) =
1

2
cos A −( )sin B −( )ei B − sin A −( )cos B −( )ei A

2
. (5.24)

Finally, if the waveplates produce identical phase delays so that A = B = , this simplifies

to become

PAB A , B( ) =
1

2
sin2

B − A( ), (5.25)

which is of the usual form for systems exhibiting violations of Bell-type inequalities, as

presented in (5.2). This result is independent of   and χ, implying the same coincidence

                                                
4 For an ideal quarter-wave plate, the relative phase delay has the fixed value = k 4 ;  is introduced here

as a free parameter to allow for the possibility of retardation errors in the waveplates used in the experiment.
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probability no matter what basis (circular, linear, or elliptical) is chosen for the

measurements, as expected from the symmetry considerations in Section 5.1. The expected

coincidence counting rate is given by

RAB = A B R0PAB A , B( ) , (5.26)

where, as before, A  and B  represent the detector quantum efficiencies and R0 is the rate of

photon pair emission into the detected signal and idler modes.

5.3 Experimental procedure and results

5.3.1 Apparatus

The pump source was a 70 mW ultraviolet laser beam generated by a cw Ar+ laser

operating at a wavelength of 351.1 nm. The downconversion medium was a 2.5 cm long

LiIO3 crystal cut and oriented for frequency-degenerate type-I phase-matching. The signal

and idler beams had a mean wavelength of = 702.2 nm and were selected by a

combination of ≈ 1 mm  apertures near the PDC and in front of the detectors. The

beamsplitter BS had nominal values of R
2 = T

2 = .500 ± .005 . The rotator R0 was a multi-

order half-wave plate, while QA and QB were multi-order quarter-wave plates; all three plates

were antireflection coated and produced retardation errors of ∆ < k 200 .

The polarizers PA and PBwere Wollaston polarizing beam splitters which transmitted

the polarization   and rejected  with an extinction ratio of 1:105 for the intensities.

Because these polarizers deviated the beam significantly when rotated, they were mounted

with a fixed orientation and the polarization angles A  and B  were adjusted by rotating a

pair of additional half-wave plates, RA and RB, through angles A 2 and B 2  (see Figure

5.4). In this manner, the light was rotated before impinging onto the fixed polarizers, which

was operationally equivalent to rotating the polarizers themselves. An additional benefit

from this scheme was that the light falling on the photodetectors always had the same
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Figure 5.4 Diagram of the performed experiment, which differed slightly from the

schematic presented in Figure 5.3. The beamplitter was mounted on a motorized translation

stage for the purpose of equalizing the signal and idler path lengths to BS. The rotators RA

and RB were used to select the polarizations transmitted to the detectors by PA and PB.

Interference filters FA and FB were used in conjunction with apertures (not shown) to select

the frequency-degenerate downconversion.
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polarization as A  and B  were varied, so that any possible systematic effects arising from

polarization-dependent detector efficiencies were eliminated5.

 The photodetectors were EG&G model SPCM-200 avalanche photodiodes with 4.5

ns jitter time, 150 ns dead time, and roughly 50% quantum efficiency. Lenses were used to

focus the light onto the active areas of these detectors, 100 µm in diameter. The 150 ns TTL

pulses generated by the detectors were used to trigger discriminators, which emitted 4.5 ns

NIM pulses that were fed to single-channel counters and to a coincidence counter. Signals

arriving together at the coincidence counter within a 9 ns resolving time were considered to

be simultaneous. The coincidence counts were corrected for a background level of

“accidental” coincidences due to the arrival of signals from uncorrelated photons within the

coincidence window; the rate of accidental coincidence was computed from the measured

single-channel counting rates and the coincidence resolving time. Interference filters FA and

FB were placed in front of the detectors; these filters had a bandwidth of 1 nm, centered on

702 nm, and a maximum transmission of 60%.

For the counting rates calculated with the pure state in Eq. (5.19) to be valid, the

optical paths to the beamsplitter had to be balanced to within the 500 µm coherence length

determined by the filter bandwidths. To accomplish this, the beamsplitter was mounted on a

motorized translation stage capable of making reproducible displacements in increments of

10 µm over a range of several mm. The beamsplitter position was scanned to produce

Hong-Ou-Mandel type interference “dips” in the coincidence counts [20]; the counts for

the experiment were recorded at the lowest point in the dip, where the quantum interference

was at a maximum6.

                                                
5 This does not eliminate the need to make a “fair sampling” assumption, since the efficiencies could
theoretically depend on the values of “hidden variables” whose measured distributions might be post-selected
on the basis of the settings

A
 and 

B
.

6 Ordinarily, this interference should not occur when the photons incident on the beamsplitter have
orthogonal polarizations: the reason is that they are distinguishable in principle via an auxiliary polarization
measurement. However, once the photons have passed through the polarizers PA and PB, this information is
“erased” in the spirit (though not the letter) of the quantum eraser experiment [21], and interference returns.
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5.3.2 Results

We collected coincidence and single-channel counts for the settings of A  and B

specified in Eqs. (5.9), which gave the maximum violation of the CHSH inequality, for the

particular case 0 = 0. We also recorded the counts for the remaining polarization angles

needed to obtain R −,−( )  via the polarization completeness relation similar to the first of

Eqs. (5.7):

R −,−( ) = R A , B( ) + R A , B( ) + R A , B( ) + R A , B( ) . (5.27)

Typical counting rates were on the order of 50,000 per second in the singles, and from 200

to 1200 per second in the coincidences. The counts were collected for intervals of 10

seconds, and coincidence counts were corrected for accidentals. The joint probabilities

P A , B( ) were computed according to (5.4), and the CHSH parameter S appearing in (5.8)

was computed from these. We repeated this procedure for seven settings of the quarter wave

plate orientations A = B =  ranging from 0 to 4 ; this implies measurements in bases

ranging from linear to circular, with five elliptical bases in between. We set the angles A ,

B, A , and B   to an accuracy of about 0.1˚.

The resulting values of S are displayed in Figure 5.5. Although none of the values

equal the theoretical maximum of S = 0.207 , they are all greater than 0.170, and clearly

violate (5.8). The largest value, S = 5°( ) = 0.192 ± .005, violates the CHSH inequality by

38 standard deviations. The value found for the circular basis, S = 45°( ) = 0.174 ± .006 , is

in violation by 29 standard deviations.

5.4 Discussion

5.4.1 Comparison with the results of Clauser and Duncan, et al.

These results are in conflict with the two earlier reported experiments with quarter-

wave plates [13,14] that exhibited no violation of the CHSH inequality in the basis of
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S( ) 0.187 0.192 0.179 0.179 0.188 0.181 0.181 0.174 0.177 0.174

S
0.005 0.005 0.005 0.005 0.005 0.005 0.006 0.006 0.006 0.006

Figure 5.5 Experimental results for the quantity S and its standard deviation for various

settings χ of the quarter-wave plates. The largest value violates the CHSH inequality S ≤ 0

by 38 standard deviations.
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circular polarizations. We can only speculate here as to why the earlier attempts failed, but

one clue did present itself during the course of our experiment: a dependence of S on the

parameter χ was observed whenever the photons did not pass through the centers of the

quarter-wave plates. This dependence could have been caused by surface imperfections in

the wave plates, so that when they were turned in the path of a non-centered beam, the

photons encountered slightly different phase-shifts from one another for different settings.

This effect would invalidate the assumption A = B =  required for the final, χ -

independent form of the joint detection probability (5.25). In effect, these imperfections may

have resulted in the measurements of Alice and Bob not being performed in quite the same

basis, which would lead to a reduction of the strong correlations necessary for the violation

of the CHSH inequality. This is in agreement with Clauser’s speculation that “retardation

errors” were too large in his experiment [13] to show the violation.

5.4.2 Supplementary assumptions

That quantum mechanics violates Bell’s inequality, and hence, local realism, is an

undisputed fact. What is disputed is whether nature can be shown to exhibit such violations.

To cast the theoretical arguments into a form testable by our apparatus, we made use of

several auxiliary assumptions that lie outside the axioms of locality and realism required for

Bell’s inequality. Because of this, our experimental results can only be said to contradict

locality and realism if these additional assumptions are valid.

The first assumption is that two orthogonal polarizations form a complete

polarization basis. This allows the use of the identities (5.7) in the derivation of the final

form of the CHSH inequality in (5.8). The assumption is common to both classical and

quantum optics, and it seems to be natural in treating optical polarization phenomena by

electromagnetic theory. It is not often contradicted even by LHV theory advocates, but

objections have been raised against an experiment similar to this one [22] on the grounds

that LHV theories are not required to describe polarization in this fashion. Presumably,



© 1998 David Branning

145

though, they are required to duplicate all of the well-known physical observations attributed

to the vector nature of polarization, such as Malus’ Law7.

The second assumption is that the beamsplitter transmittances and reflectances are

constant, in that they do not make selections as to which photons will end up in opposite or

similar arms of the apparatus based on the distribution of whatever hidden variables might

ultimately determine their detection. This assumption validates the projection procedure that

produces the renormalized, entangled state in (5.19) from the factorizable one in (5.18). An

objection [25] has been raised against this renormalization procedure, and it has been noted

that without it, violations of Bell-type inequalities are impossible to realize in type-I

downconversion schemes with beam splitters like the one presented here. The issue is not

only one of normalization, but also of the replacement of certain single-channel detection

ratesR A( ) ,R B( )  by the joint detection rates R A ,−( ),R −, B( ) that appear in (5.3).

The third assumption is the fair-sampling assumption used in the original derivation

of the CHSH inequality, and in the steps leading to (5.8). Two points should be made with

regard to this assumption. First, the inequality (5.8) may be derived with the help of a “no-

enhancement” assumption instead of the fair sampling assumption; this was first done by

Clauser and Horne in 1974 [26]. The no-enhancement assumption is “weaker” than the

fair-sampling assumption, in the sense that it rules out an even broader class of local-

realistic theories [27]. Second, it has been shown that the fair-sampling assumption is not

equivalent to the assumption common to quantum mechanics that photodetection is a

“random” process; the latter is actually a more stringent requirement than is needed for the

derivation of the CHSH inequality [28].

Finally, this experiment rests on the assumption common to all other reported

“violations of locality” except one [8]: that the properties of the photons at the source and

at distant analyzers are not affected by the settings of local analyzers even when they can be

connected by a light signal. In other words, despite the fact that spacelike separation is not
                                                
7 See, as examples, the LHV theories presented in references [23,24].
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enforced in this experiment, the two analyzer systems and the source are still maintained as

being independent from one another in the spirit of Einstein’s locality condition. This

mutual independence is crucial to the derivation of Bell’s inequality and the CHSH

inequality, and when it is assumed to hold even for non-spacelike separated systems, it is

given the name Bell locality; the relativistic demand that only spacelike separated systems be

mutually independent is then referred to as Einstein locality or Einstein separability [29,30].

What this experiment shows, then, is that not all of the following five statements can

be true: There exist in nature elements of physical reality as defined by realism; The

settings of one analyzer do not affect measurements at the other, or the source, as demanded

by Bell locality; The fair sampling assumption is valid; Polarization is a two-dimensional

linear vector; The beamsplitter is unbiased. The last three statements on this list may be

regarded as “loopholes” in the experiment, in the sense that negation of any one of them

allows the experimental results to be predicted by a LHV theory. The second statement is

also a loophole, as it is an easily-negated substitute for Einstein locality8. As of this writing,

no “loophole-free” violation of a Bell inequality has been observed, but recent progress

toward that goal has been reported in the literature [32-34].

                                                
8 See, for example, the class of LHV theories proposed in [31]
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Chapter 6

Violation of locality without Bell’s inequality

6.1 Introduction

6.1.1 The Hardy-Jordan propositions

As mentioned in Chapter 1, two new proposals for demonstrating the

incompatibility of quantum mechanics with the Einstein-Podolsky-Rosen (EPR) axioms

of locality and realism [1] have been presented within the last decade. These proposals

are novel in that they allow quantum mechanics to predict outcomes that directly

contradict the expectations of local realism without use of Bell’s inequality. While the

experiment proposed by Greenberger, Horne, and Zeilinger [2] has remained

unperformed, the Hardy-Jordan proposal [3,4] was first implemented in 1994. The

results of that experiment are presented in this chapter.

The Hardy-Jordan thought experiment begins in much the same way as the

EPR-Bohm thought experiment: a source emits a pair of photons whose anticorrelated

polarizations are then measured by spacelike-separated observers Alice and Bob (see

Figure 6.1).  However, in this version of the experiment, the polarizations are described

by the asymmetric, non-maximally entangled state

= a 1 Ax 1 By + b1 Bx 1 Ay (6.1)

where, unlike the previous situations, a ≠ b . Normalization demands that

a
2 + b

2 = 1. (6.2)
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QA QB

χ χθA θB
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DA DBPA PB

Coincidence
Counter

Alice Bob

Figure 6.1 The Hardy-Jordan thought experiment, which is identical to those presented

in Chapters 1 and 5 with one exception: the photon pairs share a non-maximally

entangled polarization state that does not possess circular symmetry.
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Now for states of the form (6.1), it is possible to find two polarization directions

for Alice’s measurement, A , ′ A , and for Bob’s measurement B, ′ B, which satisfy the

following four propositions

P ′ B A( ) = 1 (6.3)

P ′ A B( ) = 1 (6.4)

P A , B( ) > 0 (6.5)

P ′ A, ′ B( ) = 0 (6.6)

where P A , B( ) is the joint probability that Alice finds her photon to have polarization

A  while Bob finds his to have polarization B, and P A B( )  is the conditional

probability to find polarization A  given that B has already been found.

Hardy and Jordan showed that the polarization angles A, ′ A , B, ′ B  whose

quantum-mechanical expectation values satisfy (6.3) - (6.6) must exist for all states of

the form (6.1), provided a ≠ b . And yet, these four propositions create a logical

contradiction when analyzed with the EPR axioms of locality and realism (see Chapter

1).

The contradiction emerges as follows: the first proposition (6.3) says that on the

occasions when Alice finds her photon to have polarization A , Bob will find his photon

to have polarization ′ B with probability one if he chooses to measure along that

direction. Now according to the EPR definition of an element of reality, [1] “If, without

in any way disturbing a system, we can predict with certainty the value of a physical

quantity, then there exists an element of physical reality corresponding to this physical

quantity.” Thus, in this case the fact that the polarization of Bob’s photon can be

predicted with certainty means that the photon’s polarization along ′ B is an objective
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element of reality, which exists whether or not Bob decides to measure it. Furthermore,

locality demands that the existence of this element of reality for Bob’s photon be

independent of anything Alice does at her remote location. In other words, Alice cannot

create this element of reality for Bob’s photon by her measurements; rather, on those

occasions when Alice finds her photon to have polarization A , it must be the case that

Bob’s photon possessed the polarization ′ B as an element of reality from the moment it

was created.

In a similar fashion, the second proposition (6.4) guarantees that if Bob

measures polarization B, then Alice will find her photon to have polarization ′ A  if she

orients her polarizer in that direction. In these cases, the polarization ′ A  of Alice’s

photon is an element of reality which need not be measured by Alice in order to be

considered real, because Bob can predict the outcome of such a measurement with

certainty. And again, because of locality, Alice’s particle must have possessed this

element of reality from the moment it was created.

The third proposition (6.5) says that on at least some occasions, Alice’s photon

may be found with polarization A  while Bob’s is found to have polarization B.

According to the first two propositions, this means that the photons must have left the

source with elements of reality for their polarizations along ′ B and ′ A  as well, even

though those polarizations were never measured. In other words, if Alice and Bob had

chosen to do so, they could have observed the polarizations ′ A  and ′ B together instead

of A  and B. Furthermore, because they can choose the orientations of their polarizers

while the photons are in flight towards them, locality demands that the polarizer settings

cannot alter the properties of the particles as they were emitted from the source, so that

if the elements of reality ′ A  and ′ B existed from the moment the photons were created,
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Alice and Bob should be able to observe them at least as often as they observe A  and B

together.

But according to the fourth proposition (6.6), whenever Alice and Bob actually

choose those directions, they can never observe the ′ A  and ′ B  polarizations together.

This, then, is the Hardy-Jordan paradox: the first two statements imply the existence of

elements of reality ′ A  and ′ B ; the third implies that they should be observed together

some of the time, while the fourth guarantees that they will not be observed together at

all.

From a quantum mechanical point of view, there is no reason why this cannot

happen. The paradox arises when considering the Hardy-Jordan propositions in

conjunction with locality and realism, but as we have seen, quantum mechanics is not

bound by these principles. Unlike the EPR elements of reality, which have objectively

real existence if their values can be determined in principle, a quantum mechanical

observable takes on a value only when it is measured. Thus it is meaningless to argue

about what Alice or Bob would have observed had they changed their analyzer settings

at the last minute, however well this counterfactual reasoning may serve us in the

classical world.

6.1.2 Dutch doors

The counterfactual reasoning involved in the Hardy-Jordan paradox may be

simply illustrated by the system depicted in Figure 6.2, in which two doors are

portrayed [5,6]. Each door has an upper and lower half, which may be opened or closed

independently. Let us say that measuring a particular polarization is like opening one of

the halves of the doors, which are labeled in the figure as A, ′ A , B, ′ B . Now in this

particular style of door, called a “Dutch Door,” the top half is latched onto the bottom
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always always

sometimes

never

(a) (b)

(c)

(d)

Figure 6.2 Dutch doors show how the Hardy-Jordan propositions lead to a paradox

from a local-realistic viewpoint. Open doors represent polarization measurements by

Alice and Bob. Figure (a) illustrates P A , ′ B( ) = 1; Figure (b) illustrates P ′ A, B( ) = 1.

These two propositions indicate that the tops are “latched” to open with the bottoms.

Figure (c) shows that the bottom two doors are sometimes open together, P A , B( ) > 0.

Figure (d) shows that the top two doors may never be open together, P ′ A, ′ B( ) = 0 . No

objectively real, locally independent set of Dutch doors could behave this way, but

Hardy proved that quantum mechanical observables corresponding to A, ′ A , B , and ′ B
must exist for all non-maximally entangled systems.
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half, so that it is always constrained to open whenever the bottom half is opened.

Therefore, if the bottom-left door labeled A  is opened, we are certain that the top-left

door labeled ′ B must also be opened along with it, in analogy with the first Hardy-

Jordan proposition (6.3). Similarly, the bottom-right door is labeled ′ B, and must force

open the top-right door A  whenever it is opened, in accord with the second proposition

(6.4). The third proposition (6.5) can now be interpreted as follows: if we examine only

the bottom two doors, we will find that, on occasion, they are both open together.

Because the doors are latched together, this implies that if we were to look at the top two

doors instead on those occasions, we would certainly find them both to be open.

However, proposition four (6.6) insists that when we actually look at the top doors, they

are never found to be open together.

This seems to create an inescapable paradox: no everyday system of “Dutch

doors” could ever behave in such a fashion. And yet, quantum mechanics demands that

some systems exhibit just this peculiar behavior. Once again, we have a situation in

which counterfactual reasoning, as permitted by realism and locality, can be applied to

quantum mechanical predictions to generate a logical paradox. The fact is, only two of

the four doors in Figure 6.2 may be observed in any given trial, so that according to

quantum mechanics, it is both impossible and meaningless to make statements about the

behavior of the other two doors. From this point of view, as espoused by Bohr [7], the

only two doors which really exist at any moment are the two which are actually looked

at and found to be open or closed. The paradox arises only when we insist that all four

of them must exist no matter which two we observe.

In the words of N. David Mermin [8], the Hardy propositions “reign supreme

in the gedanken  realm. There they achieve their effectiveness by leading you down the

garden path every bit as enticingly as the full EPR argument does and then turning
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around and kicking out you of the garden with unprecedented efficiency and force.”

But we are still left with the question, “is it really possible for nature to behave this

way?”

6.1.3 Supplementary assumptions

For an experimental test of the Hardy-Jordan propositions with inefficient

photodetectors, it is necessary to employ the same pair of supplementary assumptions

that are used in the derivation of the Clauser-Horne-Shimony-Holt inequality in Chapter

5. The first of these is the “fair sampling” assumption, which allows us to identify the

joint emission probability with the relative frequency of joint photodetections:

P A , B( ) =
R A , B( )
R −, −( ) , (6.7)

where R A , B( ) is a measured coincidence counting rate with the two polarizers

oriented at angles A  and B, and R −,−( )  is the coincidence rate with both polarizers

removed as denoted by the dashes. The joint probabilities are therefore renormalized

within the space of detected coincidence counts, as is evident from

P −,−( ) ≡ 1 (6.8)

which is a special case of (6.7).

The second assumption required for the experiment is that the space of

polarizations is a two-dimensional linear vector space, so that the completeness relations

P −,−( ) ≡ P A ,−( ) + P A , −( ) = P −, B( ) + P − , B( )
P A ,−( ) ≡ P A , B( ) + P A , B( )
P −, B( ) ≡ P A , B( ) + P A , B( ).

(6.9)
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hold. Here again we are using the notation ≡ ± 2 to denote the linear polarization

orthogonal to .

 Within the subspace of coincidence counts, the conditional probability for a

measurement of ′ B given a measurement of A  is defined as

P ′ B A( ) ≡
P A , ′ B( )
P A ,−( ) . (6.10)

The first Hardy-Jordan proposition (6.3) may then be rewritten as

P A , ′ B( ) = P A ,−( ) (6.11)

or, with the help of (6.8) and (6.9),

P A , ′ B( ) = P A , ′ B( ) + P A, ′ B( ) , (6.12)

which can only be true if

P A , ′ B( ) = 0 . (6.13)

Similarly, the second Hardy-Jordan proposition (6.4) may be written as

P ′ A , B( ) = 0 (6.14)

while the third and fourth remain:

P A , B( ) > 0 (6.15)

P ′ A, ′ B( ) = 0 (6.16)

With the first two Hardy-Jordan conditions recast as (6.13) and (6.14), the analogy with

the Dutch doors remains intact: the functioning of the latches is now determined by the

fact that a top door can never remain closed when its bottom counterpart is opened (see

Figure 6.3.) If the doors can only be “open” or “closed,” -- i.e., if failure to observe a
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Figure 6.3 A slightly modified version of the Hardy-Jordan “Dutch doors.” Figures

(a) and (b) now illustrate the fact that top doors can never be closed while bottom ones

are open. These conditions are equivalent to the first two Hardy-Jordan propositions if

the doors only have the states “open” or  “closed,” corresponding to the two possible

orthogonal polarizations  and . The last two propositions, illustrated by (c) and (d),

are unchanged.
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particular polarization with perfect detectors is equivalent to observing the orthogonal

polarization -- then this implies that the tops must open whenever the bottoms are

opened.

6.2 Schematic and theory

6.2.1 Schematic of the experiment

Our goal was to carry out the Hardy-Jordan experiment by making joint

polarization measurements on correlated photon pairs in a system capable of verifying

the Hardy-Jordan propositions. A schematic of such a system is shown in Figure 6.4.

As in Chapter 5, a type-I downconverter (PDC) emits a frequency-degenerate pair of

signal and idler photons, whose polarizations are made orthogonal with the help of a

half-wave plate (R0) before they impinge onto beamsplitter BS from opposite sides at

near-normal incidence. The emerging photons pass through linear polarizers (PA, PB)

oriented at angles A  and B  before falling onto photodetectors (DA, DB) in each

analyzer arm. The coincidence counting rates R A , B( ) are measured for various

settings ( A , A , ′ A , ′ A , B, B , ′ B, ′ B  ) of the polarizers, to establish the probabilities

(6.13) - (6.16).

6.2.2 Quantum state of the light

It was shown in Section 5.2.1 that, provided the optical path lengths from PDC

to BS are equal for the signal and idler, the light after the beamsplitter may be

approximated by the two-mode pure state

1( ) = R ′ R 1 Ax 1 By + T ′ T 1 Bx 1 Ay + R ′ T 1 Ax 1 Ay + T ′ R 1 Bx 1 By (6.17)



© 1998 David Branning

160

FA FB

RA

Α/2

RB

Β/2

QA

Α

QB

Β

arm Barm A
R,T R',T'

Α Β

Pump

PDC

BS

R0

coincidence
counter

x y

s i

PA
DA

PB
DB

Figure 6.4 Schematic of an experiment to test local realism by verifying the Hardy-

Jordan propositions. As in Chapter 5, Figure 5.3, the idler polarization is made

orthogonal to that of the signal with the help of the rotator R0. The photons impinge

onto a beamsplitter, then emerge into arms A and B where they pass through a polarizer

P before falling onto a detector D. In this experiment, an asymmetric beamsplitter --

ideally with reflectivities R
2 = ′ R 

2
 close to 32% and transmissivities T

2 = ′ T 
2
 close

to 68% -- is used.
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where the labels A and B refer to the modes for arms A and B, and the complex

transmissivities T , ′ T  and reflectivities R , ′ R  characterize the beamsplitter BS. If we

consider only coincidence counts, this non-entangled state may be projected and

renormalized within the subspace where one photon is in each arm:

S
1( ) =

1

R ′ R 
2 + T ′ T 

2
R ′ R 1 Ax 1 By + T ′ T 1 Bx 1 Ay{ } . (6.18)

This is an asymmetric, non-maximally entangled state of the form (6.1), provided that

R ′ R 
2 ≠ T ′ T 

2
. The coincidence counts observed in this subspace are indicative of the

correlations of the entire ensemble of signal and idler photons if we make a third

assumption: the beamsplitter transmits or reflects photons at random.

6.2.3 Predicted counting rates

As in Section 5.2.3, the probability of registering a pair of photons with

perfectly efficient detectors after the polarizers, given that there is one photon in each

arm, is calculated via the quantum mechanical expectation value

PAB A , B( ) = S
1( ) ˆ a A

†
A( ) ˆ a B

†
B( ) ˆ a B B( ) ˆ a A A( ) S

1( )

= ˆ a B B( ) ˆ a A A( ) S
1( ) 2

.
(6.19)

Here ˆ a A A( )  and ˆ a B B( )  are the annihilation operators for the field modes reaching the

detectors, which may be written in terms of the output modes at BS as

ˆ a A A( ) = cos A( ) ˆ a Ax + sin A( ) ˆ a Ay

ˆ a B B( ) = cos B( ) ˆ a Bx +sin B( )ˆ a By.
(6.20)

With the help of these relations, the joint probability in Eq. (6.19) may be evaluated [9]

as
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PAB A , B( ) =
T ′ T cos A( )sin B( ) − R ′ R sin A( )cos B( ) 2

R ′ R 
2 + T ′ T 

2 (6.21)

after the annihilation operators act on the state in (6.18). Similarly,

PAB A , ′ B( ) =
T ′ T cos A( )cos ′ B( ) − R ′ R sin A( )sin ′ B( ) 2

R ′ R 
2 + T ′ T 

2 (6.22)

PAB ′ A , B( ) =
T ′ T sin ′ A( )sin B( ) − R ′ R cos ′ A( )cos B( ) 2

R ′ R 
2 + T ′ T 

2 (6.23)

and

PAB ′ A , ′ B( ) =
T ′ T cos ′ A( )sin ′ B( ) − R ′ R sin ′ A( )cos ′ B( ) 2

R ′ R 
2 + T ′ T 

2 . (6.24)

The last three probabilities must be zero in order to satisfy the first, second, and fourth

Hardy-Jordan conditions (6.13), (6.14), and (6.16), respectively. When these conditions

are imposed, we have, with the help of the reciprocity relations T = ′ T , R = ′ R , and

TR* = −T *R,

R 2

T 2 = − cot A( )cot ′ B( )

= −tan ′ A( )tan B( )
= cot ′ A( )tan ′ B( ).

(6.25)

These relations allow the joint probability in (6.21) to be written as

P A , B( ) =
T 4 T R

4 − 1( )2

cos2
A( )

T 4 + R 4( ) 1 + T R
12

cot2
A( )( ) , (6.26)

which takes on its maximum value when

tan A( ) = T R
3
. (6.27)
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Eqs. (6.25) then give

tan B( ) = R T
3

tan ′ A( ) = −T R

tan ′ B( ) = − R T

(6.28)

while the maximum value of P A , B( ) for a given beamsplitter is

Pmax A , B( ) =
T 4 T R

4 − 1( )2

T 4 + R 4( ) 1 + T R
6( ) . (6.29)

The largest possible value is Pmax A , B( ) = .09 [3], which occurs when T
2 = .32 ,

R
2 = .68 or vice versa.

6.3 Experimental procedure and results

6.3.1 Apparatus

The apparatus for our experiment [10] was nearly identical to the one described

in Section 5.3.1, with the main difference being the absence of the quarter-wave plates

(see Figure 6.5.) Once again, the pump source was a cw Ar+ laser beam with a

wavelength of 351.1 nm. The pump power was 100 mW, and this beam was incident on

a 2.5 cm LiIO3 downconversion crystal (PDC) cut and oriented for frequency-

degenerate type-I phase-matching. The signal and idler beams had a mean wavelength

of = 702.2 nm and were selected by a combination of ≈ 1 mm  apertures near the

PDC and in front of the detectors. The idler polarization was rotated by the multi-order

half-wave plate R0.

The measured values of the beamsplitter transmissivity and reflectivity were

R
2 = .30 and T

2 = .70 ; for these, Eqs. (6.27) and (6.28) yielded the following

optimum polarization angles for the experiment:
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QA

Α
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Β

arm Barm A
R,T R',T'

Α Β

Pump

PDC

BS

R0

coincidence
counter

x y

s i

PA
DA

PB
DB

RA

Α/2

RB
FA FB

Β/2

Figure 6.5 Diagram of the performed experiment, which differed slightly from the

schematic presented in Figure 6.4. As in the experiment of Chapter 5, the beamsplitter

was mounted on a motorized translation stage for the purpose of equalizing the signal

and idler path lengths to BS. The rotators RA and RB were used to select the

polarizations transmitted to the detectors by the fixed polarizers PA and PB, while

interference filters FA and FB were used in conjunction with apertures (not shown) to

select the frequency-degenerate downconversion.
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A = 74.3°
′ A = −56.8°

B = 15.7°
′ B = −33.2°

(6.30)

As in the previous experiment, the detected polarizations were selected by

rotating the multi-order half-wave plates (RA, RB) before the light impinged onto fixed

Wollaston polarizing beamsplitters (PA, PB). All three half-wave plates were

antireflection coated and produced retardation errors of ∆ < k 200 . The polarizers

had transmission extinction ratios of 1:105. The photodetectors, spectral filters,

collection lenses, and counting electronics were all exactly as described in Section 5.3.1.

In order to verify the Hardy-Jordan conditions (6.13) - (6.16) with the joint

probabilities given by (6.7), it was necessary to show that the coincidence counting rates

R A , ′ B( ), R ′ A , B( ) , and R ′ A, ′ B( ) were all zero, while R A , B( ) was non-zero. But

reporting a null result in this experiment might have begged the question, “were the

counting rates zero for the right reasons?” Fortunately, the Hong-Ou-Mandel two-

photon interference dip [11] discussed in Chapter 3 provided a way to show that the

zero probabilities were “true zeros” and not experimental artifacts, by translation of

BS. As the pure state (6.17) is only valid when the four outcomes at the beamsplitter are

indistinguishable, any imbalance in the signal and idler optical path lengths to BS

results in timing information which reduces the entanglement of the state (6.18). In

particular, if the path lengths differ by more than the 500 µm coherence length of the

detected signal and idler wavepackets, this timing information results in complete

distinguishability of the two-photon paths. The proper description of the system under

these circumstances is not a pure state, but a mixed state represented by a diagonal

density operator which is incapable of exhibiting the quantum interference effects

necessary to satisfy the Hardy-Jordan conditions.
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Therefore, after the polarizer angles were set by appropriate orientation of  RA

and RB, the beamsplitter was translated in 10 - 50 µm increments over a range of 1 mm,

centered near the equilibrium position where the signal and idler path lengths to BS

were equal. The Hong-Ou-Mandel coincidence dips were then recorded for the four

critical pairs of angles in the Hardy-Jordan conditions.

6.3.2 Results

The interference dips in the two-photon coincidence rates for each of the four

Hardy-Jordan polarization pairs are shown in Figure 6.6. Counts were recorded for 10

seconds at each position of the beamsplitter. The table shows the number of counts

recorded at the minimum of each dip; counts were also recorded at these positions for

the remaining pairs of angles required to compute R −,−( )  via the polarization

completeness relation

R −,−( ) = R A , B( ) + R A , B( ) + R A , B( ) + R A , B( ) . (6.31)

The probabilities in (6.13) - (6.16) were then computed according to (6.7), so as to yield

the following experimental results for the Hardy-Jordan conditions:

P A , ′ B( ) = 0.0034 ± 0.0004 (6.32)

P ′ A , B( ) = 0.0040 ± 0.0004 (6.33)

P A , B( ) = 0.0990 ± 0.0020 (6.34)

P ′ A, ′ B( ) = 0.0070 ± 0.0005. (6.35)
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Angles Coincidences

A, ′ B 14462 + 123

A, ′ B
9845 + 106

A, ′ B
42156 + 210

A, ′ B
225 + 35

′ A, B 15138 + 126

′ A, B
268 + 34

′ A, B
41027 + 207

′ A, B
10541 + 110

A, B 6602 + 85

A, B
8439 + 97

A, B
43098 + 213

A, B
7907 + 95

′ A, ′ B 464 + 37

′ A, ′ B
23365 + 157

′ A, ′ B
19499 + 145

′ A, ′ B
24562 + 161

(a)

(b)

(c)

(d)

Figure 6.6 Hong-Ou-Mandel interference dips and minimum coincidence counts

recorded during 10 second intervals for all of the angles relevant to the Hardy-Jordan

conditions.
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6.4 Discussion

6.4.1 Dutch doors with broken latches

The measured probabilities in (6.32) - (6.35) are meant to be compared to the

theoretical predictions for the Hardy-Jordan probabilities (6.13) - (6.16). We did not

observe true zeros for the first, second, and fourth probabilities, for reasons probably

connected to the distinguishability of the coincidence paths after the beamsplitter.

Imperfections in the crystal can cause mismatch of the signal and idler modes at BS,

thereby making a certain portion of the outgoing beams spatially distinguishable so as

to inhibit the interference of the two-photon amplitudes in (6.17) [12]. Even with

undistorted wavefronts, mode-matching at the beamsplitter is a delicate operation which

is degraded by slight misalignments or vibrations of the mirrors.

Nevertheless, the experimental results can be shown to conflict with locality and

realism when interpreted as follows: the first two conditions show the operation of the

“latches” in the Dutch doors of Figure 6.3. Ideally, when a bottom door is open, the

top door is never found closed, as indicated by (6.13) and (6.14). In fact, though, these

configurations were observed in a small fraction of the trials, indicating an occasional

failure of the latching mechanism. For the left-hand door, the latch failed in .34 % of the

trials. This implies that the first conditional probability (6.3) in the original formulation

of the Hardy-Jordan conditions is not unity, but can be found via the following

argument: starting from Eq. (6.10),

P ′ B A( ) ≡
P A , ′ B( )
P A ,−( )

=
P A ,−( ) − P A , ′ B( )[ ]

P A ,−( )

= 1−
P A , ′ B( )
P A , −( ) .

(6.36)
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With P A , ′ B( ) given by (6.32) and the data in Figure 6.6 used to determine

P A ,−( ) ≡ 0.220 ± 0.003  according to (6.9), the conditional probability is

P ′ B A( ) = 0.9845 ± 0.0020 . (6.37)

That is, the latch worked correctly and forced the left top door to be open for 98% of the

trials when the left bottom door was opened. Similarly, we may establish that the latch

for the right-hand doors worked also with probability

P ′ A B( ) = 0.9826 ± 0.0019 , (6.38)

instead of the unit probability given by (6.4). Now because the combination A, B

corresponding to the bottom doors was found to occur with probability .0990, we would

expect the top two doors, ′ A , ′ B  to be found in at least the fraction of the trials given by

Pmin ′ A, ′ B( ) = 0.0990 ± 0.0020( ) × 0.9845 ± 0.0020( ) × 0.9826 ± 0.0019( )
= 0.0950 ± 0.0034,

(6.39)

corresponding to the dashed line in Figure 6.6 (d). However, this combination was only

found to occur with the fourteen times smaller probability

P ′ A, ′ B( ) = 0.0070 ± 0.0005, (6.40)

in contradiction with the local-realistic minimum by 26 standard deviations.

6.4.2 Supplementary assumptions revisited

Have we now verified the existence of the Hardy-Jordan “Dutch doors” in the

laboratory, thereby proving that nature violates local realism? Just as with experiments

based on Bell’s inequalities, the answer is “Yes, with certain provisions.”



© 1998 David Branning

170

We recall that the first two of Hardy’s propositions were used to establish the

action of the Dutch doors in the following way: whenever a bottom door is found open

( A  or B is detected), the corresponding top door must also be found open ( ′ B or ′ A

is also detected). We attempted to establish was something close to this in our

experiment: if a bottom door is found open ( A  or B is detected), the corresponding

top door cannot be found closed ( ′ B  or ′ A  is not detected). If the top doors cannot be

found closed in these cases, does that imply that they were necessarily open? Only if it

is true that there are no alternative states for the doors besides “open” and “closed”,

which is to say, that if a polarization measurement is made along axis ′ B, it must either

register as having polarization ′ B or the orthogonal polarization ′ B . As noted in the

previous chapter, the description of polarization via a complete set of two orthonormal

vectors is an established tenet of both the classical and the quantum mechanical

descriptions of light, but it need not hold for every alternative, local realistic theory.

We also found it necessary to assume, as in Chapter 5, that the beamsplitter

reflects or transmits photons completely at random, so that the subensemble of the trials

in which one photon ends up in each arm of the apparatus is representative of the whole

ensemble of photons emitted from the PDC. Again, quantum mechanics incorporates

this assumption automatically, but it need not be true for LHV theories [13].

Finally, and most importantly, the detectors used in our experiment were not

perfectly efficient. The fact is that in some of the trials, we did not obtain any

information at all about the polarization state of one or the other photon. It is as if our

Dutch doors were at the end of a crowded ballroom, and our line of sight was

sometimes blocked, thereby indicating failure of one of the detectors. We have made the

assumption that what we see of these doors when we get a clear view represents their

behavior at all times. This is reasonable if one believes, for example, that the people walk
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in front of the doors in a random fashion, completely independent of the state of the

doors. This is the “random non-detection” type of fair-sampling assumption [14]

mentioned earlier in the context of Bell’s inequalities (see Section 5.4.2.) On the other

hand, perhaps the people in the ballroom are performing an elaborate dance which

requires them to be in the way whenever the top two doors are open: this would explain

why we never see this situation when we look for it. At least one such theory, based on

non-random detector failure, has already been constructed to explain the results of our

experiment in an entirely local realistic fashion [15,16].

Therefore, these experimental results do not provide conclusive evidence against

locality and realism. Instead, like the one reported in Chapter 5, this experiment

demonstrates a conflict between five seemingly reasonable statements: There exist in

nature elements of physical reality as defined by realism; The settings of one analyzer

do not affect measurements at the other, or at the source, as demanded by Bell locality;

The fair sampling assumption is valid; Polarization is a two-dimensional linear vector;

The beamsplitter is unbiased.

6.4.3 Comparison with the experiment of Boschi et al.

Quite recently, a similar experiment was reported by Boschi, De Martini, and Di

Giuseppe [17]. Their experimental arrangement differed from the one we have

presented in three respects: a polarization rotator was added to the signal beam

emerging from the PDC, the beamsplitter BS was replaced with a polarizing

beamsplitter, PBS, and another pair of detectors ( D A ,D B ) was added to monitor the

unused output ports of the polarizers PA and PB. By rotating the signal and idler

polarizations independently, the parameters R and T for the PBS could be varied
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continuously1 to create arbitrary non-maximally entangled states of the form (6.18) --

provided that the random beamsplitter assumption is used to validate the projection of

the state into the subensemble where one photon emerges from each side of the

beamsplitter. By monitoring the previously unused output ports of the polarizers, the

counting rates R A , B( ), R A , B( ) , etc. could be monitored simultaneously with the

half-wave plates set to A, B .

Boschi et al. claim that by monitoring these additional output ports of the

polarizers, they were able to create EPR elements of reality which were more

“unambiguous” than the ones created in our experiment. Their concern is that, in the

experiment just presented, when the polarizations A, B   are monitored, nothing can be

said about the photon pairs which were not detected -- that is, whether they went

undetected as a result of detector failure, polarizer absorption, or polarizer rejection

(indicating a polarization of A  or B). The authors claim that it is unsatisfactory to

monitor the rates R A , B( ), R A , B( )  seperately, as we did, in order to establish the

conditional probabilities (6.3) and (6.4). They state that only by monitoring all four of

these rates together can one claim to have established an element of reality

“unambiguously” according to the EPR criterion that “every time DB B( )  registers a

‘click’ on mode-B... a ‘click’ is also registered by DA ′ A( ) on mode-1 and never by

D A A( ) . ” 2

However, this claim is invalid for their experiment, just as it is for ours, because

in both cases the detectors were not 100% efficient. If there is one photon in each mode,

then when DB registers a click, there is a less-than-100% chance that a “click” is also

registered by DA (or D A ). In both experiments, the claim that the polarization of a

                                                
1 However, the experiment must be performed with fixed values of these parameters.
2 This is quoted directly from reference [17], with the angle notation adapted to be consistent with that
of this chapter.
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photon emerging from one side of PBS is an EPR “element of reality” rests on the

ability to predict with certainty that photon’s polarization whether or not it is measured,

when the other photon possesses some other polarization. In other words, one must be

able to say that every time a photon in arm B is found to have polarization B, the

photon in arm A must be found to have polarization ′ A . But in practice, this can be

established experimentally only for the detected photons; nothing can be said about

photons which went undetected.

However, if we assume that the distributions of measured events are

representative of what would have been measured with ideal (100% efficient) detectors,

then something that happens with probability one within the subensemble can be used

to establish a property for every photon whether or not we have actually measured it . In

this manner, both experiments rely on the same fair sampling assumption to establish

the existence of the EPR elements of reality.

Also, because both experiments assume, in the spirit of Einstein locality, that the

properties of the emitted photon pairs are independent of the analyzer settings, it does

not matter whether the rates R A , B( ), R A , B( ) , etc. are measured simultaneously or

not. In both cases, the counterfactual reasoning needed to construct the Hardy-Jordan

paradox is made possible by the combination of realism and locality. As in Chapter 5,

the locality assumed for this experiment is the stronger Bell locality, which insists that

the analyzers and source are all independent of one another even when they do not have

spacelike separation.

The experiment of Boschi et al., like the one outlined in this chapter,

demonstrated that the three probabilities in (6.13), (6.14), and (6.16) can be near zero,

while the probability in (6.15) is nonzero. With the same supplementary assumptions,

their data violated local realism by 14 standard deviations. Despite some superficial
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differences, then, the results of Boschi et al. show no more and no less than the results

reported here.
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Chapter 7

Summary

In the first part of this thesis, we examined a series of experiments that

highlighted the central role for interference of distinguishing “which-path”

information. In the quantum eraser experiment of Chapter 2, we encountered a subtle

variation on this idea. Because the idler photons from the two downconverters are

capable in principle of being used as “which path” markers for the signals, the

counting rate at the signal photodetector does not display interference. However, when

we recombined the idler beams and destroyed their function as “which path” markers,

the interference returned, in that we could recover subensembles of the signal counts that

exhibit fringes and “antifringes.”  The determination of whether a given signal photon

detection belonged in the “fringe” or “antifringe” set was made by correlating it with

the outcome of the polarization measurement of the idler photons in the “eraser” basis.

The total set of single-channel signal counts, being the sum of the “fringe” and

“antifringe” subensembles, still did not display interference. This is a reflection of the

fact that, as far as second-order measurements were concerned, it was still possible, in

principle, to identify the path of the signal photons, because the idlers could have been

used instead as which-path markers without disturbing the signal measurements in any

way. Interference only returned in those fourth-order measurements where the “which

path” information -- contained in the idler polarization -- was erased.

In Chapter 3, it was shown that spectral information can also serve to identify the

paths of photon pairs in a Hong-Ou-Mandel interferometer. In particular, spectral

distinguishability of the photon pairs is the (sometimes unwanted) result of pumping a
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type-II downconversion process with an ultrafast pump. If ultrafast type-II processes

are to be considered as sources for multi-particle quantum interferometery experiments,

this spectral distinguishability will have to be reckoned with. A novel method of

restoring spectral indistinguishability to these photon pairs -- by symmetrizing their

joint emission spectrum -- was demonstrated in Chapter 4. Though the source of a

peculiar phase shift in the fourth-order fringes was never identified, the method was

shown to improve the visibility of the quantum interference of these photon pairs quite

dramatically, without the loss in counting rates or timing resolution that would result

from the use of spectral filters. The link between the symmetry of the joint emission

spectrum and the indistinguishability of the photon pairs may be exploited by

researchers to improve designs for quantum teleportation experiments, quantum

computing schemes, or nonlocality demonstrations with multiple particles.

A truly vast literature on the completeness of quantum mechanics and related

questions has arisen since the publication of the famous Einstein-Podolsky-Rosen

paper in 1935. In the intervening years, Bell’s theorem was used to show that quantum

mechanics cannot be completed by a deeper theory of local-realistic hidden variables,

and this pointed the way to experiments that might determine whether this

“nonlocality” is just a strange flaw in an otherwise sound quantum theory, or a strange

fact of nature that is correctly described by quantum theory. While the experiments to

date have not been able to answer this question conclusively, they do make one thing

abundantly clear: the local hidden variable theories which remain as contenders must be

at least as counterintuitive as quantum theory, in that they can preserve locality and

realism only at the expense of the fair-sampling assumption. The nonlocality

experiments of Chapters 5 and 6 are similar but weaker demonstrations of this fact,

because they require the use of an additional “random beamsplitter” assumption due to
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the way the entangled state was generated. Nevertheless, it is the hope of this author that

the experiment reported in Chapter 6, in particular, might have some value as a simple

demonstration of how counterfactual reasoning about the outcomes of quantum

mechanical experiments can lead to unavoidable logical contradictions.

A major goal of the research in this field is a conclusive, loophole-free test to

determine whether or not nature is bound by locality and realism. Such an experiment

could be based on Bell’s inequalities, Hardy’s propositions, the Greenberger-Horne-

Zeilinger measurements, or on some other scheme which has yet to be discovered.

Whatever form the experiment ultimately takes, it will certainly rely on quantum

interference effects of entangled particles like the ones reported throughout this thesis.

The author has participated in several research efforts not described in this

thesis. These include an experimental demonstration of time-dependent interference, a

theoretical investigation of downconversion in the presence of phase-conjugate mirrors,

an experimental test of a local-hidden-variable model for photodetection, and a

theoretical analysis of multiphoton interference effects at a beamsplitter. Accounts of

these are included in the list of publications.
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Appendix A

Quantum state for type-I downconversion           
with a cw pump

A.1 The interaction picture and the weak-field
approximation

All of the analysis in this thesis has been carried out in the interaction picture, in

which the Hamiltonian describing the system is written as the sum of a free Hamiltonian

and an interaction Hamiltonian:

ˆ H = ˆ H f + ˆ H I . (A.1)

The time evolution of any operator is then governed by the Heisenberg equation of

motion using only the free Hamiltonian,

d

dt
ˆ O t( ) = ˆ O t( ), ˆ H f[ ], (A.2)

while the state of the system at an arbitrary time, t( ) , evolves from the initial state

0( )  via the Schrödinger equation with only the interaction Hamiltonian:

  
t( ) = exp

1

ih
ˆ H I ′ t ( )d ′ t 

0

t

∫ 
  

 
  (0) . (A.3)

If the interaction described by ˆ H I  is weak, and if the interaction time T is short,

we may approximate this unitary transformation using the first two terms of the Taylor

series expansion for the exponential in (A.3). This results in the (non-unitary) evolution

  
T( ) ≅ 1 +

1

ih
ˆ H I ′ t ( )d ′ t 

0

T

∫ 
  

 
  0( ) . (A.4)

We will take the initial state of the system to be



© 1998 David Branning

180

0( ) = 0 s 0 i ≡ vac . (A.5)

That is, there are initially no photons in either the signal or idler modes.

A.2 Hamiltonian for the parametric downconversion
interaction

To carry out the procedure above for the downconversion system shown in

Figure A.1, we must find expressions for the quantized free and interaction

Hamiltonians for the fields within the downconversion crystal. We begin with the

classical expression for the total energy of an electromagnetic field in a dielectric

medium within a volume V :

H =
1

2
d3r

1

0

B2 r,t( ) + E r,t( )⋅ D r,t( )
 

 
 

 

 
 

V

⌠ 

⌡ 
 

= 1

2
d3r

1

0

B2 r,t( ) + 0E
2 r,t( ) + E r,t( )⋅ P r,t( )

 

 
 

 

 
 

V

⌠ 

⌡ 
 .

(A.6)

The first two terms are the energy of the free electromagnetic field, while the last

represents the contribution from the induced polarization within the medium. The

induced polarization may be written as an expansion in powers of the incident electric

field, with the leading terms

P(r,t) = 1( )E(r,t) + 2( )E(r,t)E(r,t) , (A.7)

where 1( ) and 2( ) are the first and second-order electric susceptibility tensors which

characterize the linear and lowest-order nonlinear responses of the medium,

respectively.1 As we are considering the interaction to be due to the nonlinear response

                                                
1 This relation describes an instantaneous response to the incident electric field, implying that the
susceptibilities are independent of frequency. This is not strictly true, of course: the nonlinear media do
exhibit dispersion, and in fact the dispersive properties can become important in the ultrafast domain,
where large pump bandwidths are involved. For the moment, we shall restrict our attention to
frequencies far from any resonances in the material, so that these dispersive effects are small.
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of the medium, we will include the linear response as part of the free Hamiltonian, so

that

H f =
1

2
d3r

1

0

B2 r,t( ) + E2 r,t( )
 

 
 

 

 
 

V

⌠ 

⌡ 
 (A.8)

 where = 0 + 1( )  is the linear dielectric constant of the medium. This leaves us with

the interaction Hamiltonian

HI =
1

2
d3rE(r,t) ⋅ 2( )E(r,t)E(r,t)

V∫ . (A.9)

To make the transition from the classical to the quantum mechanical description

of this system, we must quantize the fields in the above expressions. Some care has to

be taken in doing so, but as long as we remain in the perturbative regime where the

nonlinear interaction is weak, we can follow the usual prescription of replacing the

classical electric fields with their corresponding free-field Hilbert-space operators.

These operators are constructed by decomposing the fields into sums over a discrete set

of modes that are planewave solutions of Maxwell’s equations within a quantization

volume L3, and then replacing the time-dependent parts of the mode functions with the

photon annihilation and creation operators ˆ a t( )  and ˆ a † t( ) . The results are

  
ˆ E r ,t( ) =

1

L3 2 l( )
k,s
∑ ˆ a k, s t( ) k , se

ik ⋅r − ˆ a k ,s
† t( ) k,s

∗ e− ik⋅r[ ] (A.10)

and

  
ˆ B r ,t( ) =

1

L3 2 l( ) n( )
ck ,s

∑ ˆ a k ,s t( ) × k ,s( )eik ⋅r − ˆ a k ,s
† t( ) × k ,s

∗( )e−ik⋅r[ ] , (A.11)

where   l( ) ≡ i h 2 . The polarization label s = 1,2 denotes the two orthogonal

transverse polarizations that are allowed at each frequency, the k, s  are complex unit

vectors describing the two basis polarizations for each mode, and k = k is the
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propagation vector for each mode, with magnitude equal to the wavenumber

k = n( ) c , and direction . Here n( )  is the frequency-dependent index of

refraction in the dielectric. The annihilation and creation operators satisfy the

commutation relations

ˆ a k,s t( ), ˆ a ′ k , ′ s 
† ′ t ( )[ ] = k, ′ k s, ′ s 

ˆ a k,s t( ), ˆ a ′ k , ′ s ′ t ( )[ ] = 0

ˆ a k,s
† t( ), ˆ a ′ k , ′ s 

† ′ t ( )[ ] = 0

(A.12)

and are “ladder” operators in the sense that they change the number of photons, n, in

the mode k,s  according to

ˆ a k, s t( ) n k,s
= n n −1 k,s

ˆ a k, s
† t( ) n k,s = n +1 n +1 k ,s .

(A.13)

A.3 Dynamics of the field operators

It is helpful to compute the time evolution of the field operators. Using (A.10)

and (A.11),the quantized Hamiltonian for the free fields may be written as

  
ˆ H f = h ˆ a k ,s

† t( ) ˆ a k, s t( ) + 1
2( )

k ,s
∑ . (A.14)

This Hamiltonian can be inserted into (A.2) along with the commutation relations

(A.12) to show that in a free field, the annihilation and creation operators evolve in time

according to

  

d

dt
ˆ a k ,s t( ) =

1

ih
ˆ a k, s t( ), ˆ H [ ] =−i ˆ a k,s t( )

d

dt
ˆ a k ,s

† t( ) =
1

ih
ˆ a k, s

† t( ), ˆ H [ ] = i ˆ a k ,s
† t( )

(A.15)

with solutions
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ˆ a k, s t( ) = ˆ a k, s 0( )e−i t

ˆ a k, s
† t( ) = ˆ a k, s

† 0( )ei t .
(A.16)

The free electric field operator may therefore be rewritten as

  

ˆ E r ,t( ) =
1

L3 2
l( ) ˆ a k, s k, se

i k⋅ r − t( )

k, s
∑ + h.c.

= ˆ E +( ) r,t( ) + ˆ E −( ) r,t( )
(A.17)

where the notation for the time argument of ˆ a k, s 0( ) has been suppressed. The letters

“h.c.” stand for the Hermitian conjugate of the term immediately to the left. ˆ E +( ) r ,t( )

is often referred to as the positive-frequency part of the electric field operator, and is

also known as the complex analytic signal. For one-dimensional problems, a simpler,

scalar version of this operator, for which   l( ) ≡ 1, is often used:

ˆ E +( ) r,t( ) =
2

ˆ a k, se
i k⋅ r − t( )

k, s
∑ . (A.18)

This represents a single field component, dimensionally renormalized so that the

product ˆ E −( ) ˆ E +( )  has units of photons per second. The quantity = 2 c L  is the

mode-spacing within a one-dimensional “quantization length” of dimension L.

A.4 The multimode state

We are now in a position to compute T( )  in Eq. (A.4). We intend to

substitute the field operator (A.17) into (A.9) to produce an explicit expression for ˆ H I ,

which can then be inserted into (A.4). We note that the electric field within the

interaction region is the sum of the pump, signal, and idler fields,
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ˆ E (r ,t) = ˆ E p(r,t) + ˆ E s(r ,t) + ˆ E i(r,t)

= 1

L3 2
l( )ˆ a k p, e ee

i k p⋅ r− pt( ) + h.c.
k p

∑

+
1

L3 2 l( ) ˆ a k s ,o oe
i k s ⋅r − st( ) + h.c.

k s

∑

+ 1
L3 2

l( ) ˆ a k i, o oe
i k i ⋅r − i t( ) + h.c.

ki

∑

(A.19)

Here we have incorporated the fact that type-I phase-matching conditions require the

pump to be e-polarized, while the signal and idlers are both o-polarized. Inserting this

field operator directly into (A.9) yields a plethora of terms, most of which will not

contribute anything when acting on the initial vacuum state. The most important terms

for downconversion are

ˆ H I =
1

2

1

L9 2
˜ 

eoo
2( )

k i

∑
ks

∑ e o
∗

o
∗e

i p − s − i( ) t
d3re

i k p − ks − ki( ) ⋅r

V∫ ˆ a k p , e
ˆ a ks ,o
† ˆ a ki ,o

† + h.c.
k p

∑ (A.20)

where eoo
2( )  is the element of the electric susceptibility tensor that couples the pump field

with e-polarization to the signal and idler fields with o-polarizations2. The first term

above corresponds to the downconversion process, indicating the annihilation of a pump

photon and the creation of a signal and an idler photon. The Hermitian conjugate of this

term corresponds to up-conversion, in which the signal and idler photons are annihilated

to produce a pump photon; this term gives a zero contribution when the initial signal

and idler state is the vacuum, but is included here to ensure that ˆ H I  is Hermitian.

For the case of cw pumping, the pump field is usually taken to be a

monochromatic plane-wave, consisting of only a single mode with propagation vector

kp  and frequency p . Furthermore, it is considered to be intense enough that it is not

                                                
2 The notation that indicates the frequency dependence of the susceptibility has been suppressed. By our
earlier arguments, this term is not allowed to depend on frequency, but we will see shortly that we can
include a frequency dependence for the susceptibility quite easily.
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significantly affected by the occasional annihilation of one photon. Because the pump

field is usually produced by a laser, it is taken to be in a coherent state V k p ,e , which is

a right eigenstate of the annihilation operator ˆ a k p ,e  . With these assumptions, we may

treat the pump as a classical monochromatic field with a constant amplitude V0:

Ep r,t( ) = V0 ee
i k p ⋅ r − pt( )

. (A.21)

Using this instead of the mode expansion for the pump in (A.20) yields a simpler

interaction Hamiltonian:

ˆ H I =
1

2

1

L3 V0
˜ 

eoo
2( )

ki

∑
k s

∑ e o
∗

o
∗e

−i p − s − i( )t
d3re

i k p − ks − ki( )⋅r
V∫ ak s , o

† ak i , o
† + h.c. (A.22)

We may simplify it further by noting that the important signal and idler fields

are sums over the range of detected modes, as determined by the apertures depicted in

Figure A.1. For small apertures, the range of allowed propagation directions is

sufficiently restricted that we may consider the pump, signal, and idler fields all to have

fixed propagation directions p , s , and i . Then we may replace the sum over

propagation vectors with a sum over frequencies:

  
ˆ H I =

1

2 2
l xlylzV0

˜ 
eoo
2( )

e o
∗

o
∗e

− i p − s − i( )tΦ p ; s , i( )ak s ,o
† ak i ,o

†

i

∑
s

∑ + h.c. (A.23)

Here  is the mode spacing, which is usually taken to the limit → 0  as the sums

are replaced by integrals at the end of any calculations. The function

  

Φ p; s , i( ) = 1

l xl yl z

d3re
i k p − k s − ki( ) ⋅r

V∫

= e
i k p p( )− ks s( )−k i i( )( ) ⋅r0 sinc 1

2 kp p( ) − k s s( ) − ki i( )( )
m
lm[ ].

m = 1

3

∏
(A.24)
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Pump

PDC Signal

Idler

Figure A.1 A cw pump beam produces signal and idler beams in the process of

spontaneous parametric downconversion. The signal and idler beams are produced over

a range of propagation directions, but this range is narrowed by placing pinhole

apertures in front of the detectors, so that we may treat the signal and idler beams each

as having a single propagation direction.
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is the phase-matching function for the pump, signal, and idler modes. The various   lm

refer to the x, y, and z dimensions of the interaction region (see Figure A.2), and r0  is

the position at the center of the interaction region.

Inserting the interaction Hamiltonian in (A.23) into (A.4), and letting the

creation operators act on the initial vacuum state, we have

  
T( ) = vac +

gV0lxl ylz

ih
d ′ t 

2
e

−i p − s − i( ) ′ t 

i

∑
s

∑
0

T⌠ 
⌡  Φ p; s , i( )1 k s ,o 1 ki ,o (A.25)

where the parameter

g ≡ ˜ 
eoo
2( )

e o
∗

o
∗  (A.26)

reflects the strength of the coupling between the modes. Carrying out the time

integration gives

T( ) = vac +
2

e
−i p − s − i( )T 2

i

∑
s

∑ T sinc 1
2 p − s − i( )T[ ]

×Φ p; s , i( ) 1
s , o

1
i ,o

(A.27)

 where we have dropped the directional mode labels ks , ki  in favor of frequency labels

s , i, and the dimensionless parameter

  
≡

gV0l xl yl z

ih
(A.28)

is the magnitude of the perturbation on the initial vacuum state.

The state in (A.27) represents a superposition of amplitudes for emission of a

signal and idler pair at various discrete frequencies. It is often referred to as the

“multimode” state for parametric downconversion. We see that although the pump was

taken to be monochromatic, the signal and idler photons each have a range of possible
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 lz

 lx
 ly V

Figure A.2 The interaction volume is determined by the length of the crystal along the

direction of propagation, z, and by the transverse dimensions of the pump beam, which

is taken to have a rectangular cross-section for simplicity.
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frequencies, weighted by the product of sinc 1
2 p − s − i( )T[ ]   and Φ p; s , i( ).

The first of these terms is peaked at the value

p − s − i = 0 , (A.29)

and for interaction times that are long compared with the coherence time of the

downconverted light, it behaves somewhat like a delta function that ensures the fields

satisfy the energy conservation phase-matching requirement. Since the pump frequency

is fixed, this term really only places a constraint on the sum of the signal and idler

frequencies. For this long-time limit, it is possible to rewrite the multimode state as3

= vac + Φ s , p − s( ) 1
s , o 1

p − s ,o

s

∑ (A.30)

where we have suppressed the notation for the time dependence of , which is

understood to describe the light at a time after the downconversion interaction is

completed. In the limit → 0  we have the continuous multimode superposition state

= vac + d sΦ s , p − s( )1
s , o 1

p − s ,o

0

∞

∫ . (A.31)

The states in the preceding two equations are examples of frequency-entangled states,

because they are pure states for the signal and idler photon pair which cannot be

factored into products of separate states for each photon. When the photons are emitted,

the frequency of each one is undefined until it is measured -- but because of the

anticorrelation guaranteed by the phase-matching function, a measurement of either the

signal or the idler frequency alone is enough to determine the frequency of both

photons.

                                                
3 In the following two equations, the phase-matching function Φ has been redefined, and has the
dimensions of inverse frequency
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A.5 The two-mode state

In the expressions above for the multimode state, the phase-matching function Φ

determines the relative weights in the sum for the various allowed combinations to be

emitted. Inspection of (A.24) reveals that this function is peaked at the value

kp p( ) − ks s( ) − k i i( ) = 0 , (A.32)

becoming more sharply peaked as the interaction region dimensions   lm  are increased.

In the limit of infinite interaction volume, Φ  becomes a delta function which ensures

that the momentum conservation phase-matching requirement is satisfied.

 Of course, in practice the downconversion crystals are not of infinite length, and

the pump mode is not an infinitely wide planewave, so that Φ  may be nonzero over

quite a broad range of values for s  and i. This broad bandwidth indicates that the

signal and idler photons are actually excitations of “wavepacket” modes which may be

quite short in duration. In the lab, with typical crystal lengths of several cm and beam

spot sizes of a few mm, these wavepackets may only be a few ps in duration,

corresponding to bandwidths on the order of 1012 Hz.

Nevertheless, it is often convenient to treat the signal and idler modes as if they

were monochromatic, rather than broadband. The motivation for doing so is that it

simplifies the analysis of almost any experiment, while still demonstrating the

nonclassical features that we have discussed in the previous sections. This assumption

can be made quite easily by restricting the integral in (A.31) to just those frequencies

that exactly satisfy the momentum phase-matching condition. In this monochromatic

approximation, we have

T( ) = vac + 1
s , o 1

i , o (A.33)
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where the factor   now includes the product Φ s , i( ) . This state is a reasonable

approximation so long as the weak interaction condition

2 << 1 (A.34)

is satisfied: the state is then normalized according to

T( ) T( ) = vac vac + 2

s , o 11
s , o×

i ,o
11

i ,o

= 1 + 2

≅ 1.

(A.35)
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Appendix B

 The quantum state for type-II downconversion  with
a broadband pump

B.1 Derivation

 In Appendix A we derived an expression for the two-photon state produced in a

cw-pumped type-I downconversion process. We will follow the same perturbative

procedure here, but with the added complications that come from type-II phase-

matching conditions and the broad range of frequencies available for downconversion

within the ultrafast pump pulse.

The collinear type-II downconversion process is depicted in Figure B.1, in

which a collimated pump beam is incident on a birefringent nonlinear crystal.  We will

consider the downconversion produced by a single pump pulse, with an electric field

given by

Ep
+( ) t( ) = V0v z − ct( ) ee

i k p p( ) ⋅r − pt( )
. (B.1)

Here V0  represents the maximum amplitude of the pump field, whilev z − ct( ) is a

dimensionless “envelope” function which propagates in the z direction. Once again we

are treating the pump field classically and assuming that the non-depleted pump and

coherent-state pump approximations hold (see Appendix A). The pump beam is

assumed to have a linear polarization e  along the extraordinary axis of the crystal,

while the signal and idler fields are assumed to have polarizations along the ordinary

and extraordinary axes, respectively, as demanded by the type-II phase-matching

considerations in Section 1.3.3. Furthermore, the pump, signal and idler propagation

directions, p , s , and i  are all fixed for collinear propagation along z, so that sums
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Pump (e) PDC Signal (o)

Idler (e)

z

Figure B.1. Type-II collinear parametric downconversion. For negative uniaxial crystals

such as BBO, the pump wave must have extraordinary polarization, while the signal and

idler beams have ordinary and extraordinary polarizations, respectively.
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over the propagation vectors may be replaced by sums over frequencies. Experimentally,

this condition is ensured with the help of the pinhole apertures shown in Figure B.1.

With these considerations in mind, we may take the interaction Hamiltonian in

the interaction picture to have the form

  

ˆ H I =
1

2 2
V0

˜ 
eoe
2( )

e o
∗

e
∗l xl y

e

∑
o

∑ dze
− i p + o − e( )te i k p + ko −k e( )z v z − ct( )

z∫
× ˆ a k o( ),o

† ˆ a k e( ),e
† + h.c.

(B.2)

by analogy with equation (A.22).

In the weak-interaction limit, the state after a time T is then

  

T( ) ≅ 1 + 1
ih

ˆ H I ′ t ( )d ′ t 
0

T

∫ 
  

 
  vac

= 1 +
gV0l xly

ih
d ′ t 

2
dze

−i p − o − e( )t
e

i k p − ko − ke( ) z
v z − c ′ t ( )

z∫
e

∑
o

∑
0

T

∫
 

 
 

                                                             × ˆ a o
†

o( ) ˆ a e
†

e( ) + h.c.] vac

(B.3)

where g ≡ ˜ 
eoe

2( )
e o

∗
e
∗  in analogy with (1.26), and the notation

ˆ a †( ) ≡ ˆ a 
k( ),
† (B.4)

has been introduced to represent the creation operators for the signal and idler modes

with frequencies o  and e, and polarizations = o,e . Next we let

c ′ ′ t = z − c ′ t (B.5)

so that

  

T( ) = 1 +
gV0l xly

ih 2
dze

i k p p( )− ko o( ) − ke e( )( ) − p − o − e( ) c[ ]z
z∫

e

∑
o

∑
 

 
 

× d ′ ′ t 
z c −T

z c

∫ w c ′ ′ t ( )ei o + e( ) ′ ′ t ˆ a o
†

o( )ˆ a e
†

e( ) + h.c. 
 vac

(B.6)

with the full time dependence of the pump field represented by
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w t( ) ≡ v ct( )ei p t
. (B.7)

Because w ′ ′ t ( )  is nonzero only for a small range of times, the limits of the time integral

may be extended to ±∞ , so that the state is then given by

  

T( ) = 1 +
gV0l xly

ih
dze

i k p p( )−k o o( ) − ke e( )( )− p − o − e( ) c[ ]z
z∫

e

∑
o

∑
 

 
 

× o + e( )ˆ a o
†

o( ) ˆ a e
†

e( ) + h.c.] vac

(B.8)

where

( ) ≡
1

2
dtw t( )e i t

−∞

∞

∫ (B.9)

is the Fourier transform of the temporal profile of the pump pulse. The z-integral yields

  l z  multiplied by the phase-matching function

Φ p; o, e( ) = sinc 1
2 kp p( ) − ks o( ) − ki e( )( ) − p − o − e( ) c{ }L[ ]

×e
i k p p( )− ks o( ) − ki e( )( ) zo

 (B.10)

where   L = l z  is the length of the crystal along the direction of propagation. If the

crystal is cut and aligned for type-II phase matching, the second term in brackets

reduces to zero, so that this function takes on the familiar form

Φ o , e( ) = e
i k p o + e( )− k s o( ) − ki e( )( ) zo sinc 1

2 kp o + e( ) − ks o( ) − ki e( )( )L[ ] (B.11)

The state is now given by

= 1 + o + e( )
e

∑
o

∑ Φ o , e( ) ˆ a o
†

o( ) ˆ a e
†

e( ) + h.c.
 

 
 

 

 
 vac (B.12)

with the dimensionless parameter

 
  

≡
gl xl ylzV0

ih
(B.13)
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defined in much the same way as in  (A.28). We have dropped the dependence on T in

the notation for , with the understanding that the state is valid (up to a phase) for all

times after the interaction is completed. Letting the creation and annihilation operators in

(B.12) act on the vacuum state yields the final expression

= vac + o + e( )Φ o , e( ) o o e e
e

∑
o

∑

= vac + 1( ) ,
(B.14)

where we have introduced the following notation for a fock state with a single photon in

the signal or idler modes:

≡ ˆ a †( ) vac . (B.15)

B.2 Normalization

The norm of this state is

= 1+ 2
B (B.16)

where

B ≡ 1( ) 1( ) = ( )2

o + e( ) 2
Φ o , e( ) 2

e

∑
o

∑ (B.17)

is the dimensionless norm of the state 1( ) .Taking the limit as the mode spacing 

tends to zero we have

B = d od e o + e( ) 2
Φ o , e( ) 2

0

∞

∫
0

∞

∫ . (B.18)
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For the particular choice of a normalized gaussian pump spectrum centered at twice the

mean frequency of the degenerate signal and idler beams, we have

o + e( ) =
2

e
− o + e − 2 

  
 
  

2

, (B.19)

so that B becomes

B =
4 2

−

, (B.20)

with

− ≡ L
ko −

ke 
 
  

 
 . (B.21)

The state in (B.14) is a valid approximation so long as the magnitude of the

perturbation on the initial state is small. This condition is satisfied when

2 1( ) 1( ) = 2
B << 1. (B.22)

In this case, the norm of the state in (B.16) is approximately equal to one, even though

1( )  is not normalized to one.
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Appendix C

Quantum state for the “Engineering
Indistinguishability” experiment

C.1 Derivation

In Chapter 3 and Appendix B, the labels o and e were used for the polarizations

of the signal and idler beams created in a collinear type-II downconversion process.

However, because each photon from the new source in Chapter 4 is a superposition of

an e and an o-polarized photon from the two creation processes, we can avoid some

confusion by choosing new polarization labels for the signal and idler modes. We will

identify the polarization direction parallel to the optical table and to the extraordinary

axis of the PDC, as x, and the polarization direction orthogonal to this as y (see Figure

5.1b).

The electric field of the e-polarized ultrafast pump pulse will be treated

classically, as in Appendix B. The form is identical to that given in (B.1)

Ep
+( ) t( ) = V0v z − ct( ) ee

i k p p( ) ⋅r − pt( )
. (C.1)

Initially, the signal and idler modes are unoccupied, in the vacuum state. After

the first pass through the downconversion crystal, the state of the light is given by

  
1 ≅ 1+

1

ih
ˆ H I1 ′ t ( )d ′ t 

0

T

∫ 
  

 
  vac (C.2)

where T is the interaction time (equal to the pump duration), and the interaction

Hamiltonian in the interaction picture has the form analogous to that in (B.2):
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ˆ H I1 =
1

2 2
V0

˜ 
eoe
2( )

e o
∗

e
∗l xl y

e

∑
o

∑ dze
− i p + o − e( )te i k p + ko −k e( )z v z − ct( )

z∫
×ak o( ), y

† ak e( ), x

† + h.c.

(C.3)

Following the procedure in Appendix B, equations (B.3) - (B.14), we have for the

quantum state of the light after the first pump pulse:

 
1 = 1+ o + e( )Φ o, e( ) ˆ a y 1

†
o( ) ˆ a x 1

†
e( ) + h.c.

e

∑
o

∑
 

 
 

 

 
 vac

= vac + o + e( )Φ o , e( ) o y1 e x1
e

∑
o

∑
(C.4)

with  defined in (B.13) and Φ o , e( ) defined in (B.11). The terms ˆ a †( )  and

 have the meanings given in (B.4) and (B.15), with the polarization labels x1 and

y1 denoting the signal and idler modes for the first downconversion process.

After passing through the λ/4 plate twice and being reflected back into the

downconversion crystal, the signal and idler photons have their polarizations exchanged,

while their frequencies are preserved. The field operators for the modes returning to the

crystal are therefore related to the “process one” signal and idler modes by

ˆ a x o( ) = − ˆ a y 1 o( )
ˆ a y e( ) = ˆ a x1 e( ).

(C.5)

Thus, the state before the second pass of the pump pulse may be rewritten in terms of

the final field modes as

 1 = vac − o + e( )Φ o , e( ) o x e y
e

∑
o

∑ . (C.6)

The signal and idler modes for the second downconversion process are related to those

for the first process by the phases  s = ks s( )l signal  and  i = ki i( )l idler . Meanwhile, the
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pump pulse has acquired a phase   p = kp p( )lpump  during its propagation to M1 and

back, so that the interaction Hamiltonian for the second downconversion process is

given by

  

ˆ H I 2 = ei 1

2 2
V0

˜ 
eoe

2( )
e o

∗
e
∗l xl y

e

∑
o

∑ dze
−i p + o − e( )te i k p +k o − ke( )zv z − ct( )

z∫
×ak o( ),y

† ak e( ), x

† + h.c.

(C.7)

where ≡ s + i − p . Treating 1  as the initial state for the second process, the state

of the light after the second interaction is

 = 1 + ei
o + e( )Φ o, e( ) ˆ a y

†
o( ) ˆ a x

†
e( ) + h.c.

e

∑
o

∑
 

 
 

 

 
 1 . (C.8)

Letting the creation and annihilation operators act on 1  and keeping only the terms

of lowest order in  gives

= vac − o + e( )Φ o , e( ) o x e y
e

∑
o

∑
+ei

o + e( )Φ o , e( ) o y e x
e

∑
o

∑
(C.9)

which may be written more compactly as

= vac + o + e( )Φ o , e( ) o x e y
− ei

o y e x[ ]
e

∑
o

∑

= vac + 1( ) .

(C.10)

C.2 Normalization

The norm of this state is

= 1+ 2
2

B − K cos( )( ) (C.11)

where
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B = ( )2

o + e( ) 2
Φ o , e( ) 2

e

∑
o

∑ (C.12)

as in (B.17), and

K ≡ ( )2

o + e( )2
Φ∗

e , o( )Φ o , e( )
e

∑
o

∑ . (C.13)

As in Appendix B, we may evaluate these terms in the limit → 0  using the

normalized gaussian pump spectrum

o + e( ) =
2

e
− o + e − 2 

  
 
  

2

, (C.14)

giving

B =
4 2

−

(C.15)

and

K = 2B
2

o + e( )
 

 
 

 

 
 erf o + e( )

4 2

 

 
 

 

 
 . (C.16)

The state in (C.10) is a valid approximation so long as the magnitude of the perturbation

on the initial state is small. Noting from the integral definitions of B and K that K ≤ B ,

we see that

1( ) 1( ) = 2 B − K cos( )( )
≤ 4B

(C.17)

Evidently the condition for the “weak interaction” approximation is

2 1( ) 1( ) ≤ 2
4B << 1. (C.18)

Once again, the norm of  is approximately equal to one even though 1( )  is not

normalized to one.
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Appendix D

Locking system for an interferometer

D.1 Conceptual arrangement

In the experiment described in Chapter 4, two downconversion processes were

generated within a Michelson interferometer as depicted in Figure 5.3. As in any

interference experiment, it was important to keep the  difference in path lengths as

constant as possible during each counting interval. For short counting times, this can

usually be accomplished with passive stabilizing techniques such as minimizing air

currents, maintaining constant temperature, and eliminating sources of vibration or

decoupling from these sources. However, with our apertures (Figure 5.6) closed down

for better interference visibility, the low coincidence counting rate of 15/sec implied that

long counting times were necessary to acquire good statistics at each point. Under these

circumstances passive techniques were no longer sufficient.

 To achieve better control over the fluctuations, we constructed the active locking

system shown in Figure D.1. The beam from a frequency-stabilized 5 mW HeNe laser

beam was expanded with a 10 cm focal length lens and injected into the unused port of

the Michelson interferometer at a small angle relative to the arms. Although the dichroic

mirror MD2 is coated for transmission in the red, a small fraction of the HeNe beam

was still diverted to mirror M2, from which it was reflected back through MD2. Most of

the incident HeNe light was transmitted through MD2 to M1, where it was reflected

back to MD2. Once again, most of this light passed through MD2, but a small fraction

was reflected. For a proper choice of the input beam’s incident angle, the two beams

displayed a set of vertical “tilt” fringes at the collection mirror M3. This mirror was
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 PDC

M2 MD2

M1

M3

PZT Driver

PZT

HeNe

Function
Generator

Locking Circuit
+

+
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Figure D.1 Locking system for the 2-color Michelson interferometer. The HeNe beam

incident from the left forms a set of interference fringes which are imaged onto a pair of

photodiodes. The difference signal is integrated and used as a control input to the

piezoelectric driver. A change in the fringe position at the diodes results in a correcting

voltage at the piezoelectric transducer (PZT).
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placed just outside the path of the downconverted light, and reflected the HeNe fringes

onto a cylindrical lens (that extended their widths to about 3 mm each. A typical fringe

pattern contained 8-10 fringes, for a total pattern width of around 3 cm. The spot size

incident on the cylindrical lens was about 1 cm. As the path lengths in the interferometer

changed, so too did the lateral positions of these fringes; the precise position of the

fringe pattern was used to create a position control signal which could be sent back to

the PZT to correct for the fluctuations.

The fringe pattern fell onto a pair of adjacent photodiodes, and the difference

between the outputs of these two photodiodes was amplified, integrated, and sent to the

PZT driver with the help of the locking circuit shown in Figure D.2. A difference signal

of “zero” occurred when a fringe was centered exactly between the two diodes. If a

fluctuation caused the fringe to move, the difference signal would become more negative

or positive, which either added to or subtracted from the integrated position signal being

sent to the PZT driver. The PZT-mounted mirror M1 would move in response to this

increased signal, until it arrived at some new position which returned the HeNe fringe to

its centered position across the diodes, generating a difference signal of zero and

causing no further change to the position signal. In this way, the PZT was continually

fed a control voltage of exactly the right amount so that the path length difference

remained “locked” to this stable point. For the experiment, the scans in  were

achieved by mounting the pair of photodiodes on a translation stage under computer

control. As the diodes were translated to different positions across the fringe pattern, the

locking point was forced to move with them, so that the same fringe stayed centered on

the diodes at all times. This shift in the fringe position corresponded to a change in the

relative path lengths of the two interferometer arms. A diode translation of one fringe

width (about 3 mm) corresponded to a change of path length difference by
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HeNe = 633 nm; in practice, about 2 mm of translation were needed to scan through the

405 nm period for .

D.2 Operational details

The photodiodes were provided with a +12 V bias supply from the locking

circuit, and each returned a current which was converted to a voltage using operational

amplifiers in a “trans-impedance” configuration. The gain for each diode could be

adjusted by varying the resistance of the negative feedback across the op-amps. The

signals were then subtracted, and a variable offset was added so that the difference

signal could be zeroed at the correct point, with a fringe centered exactly on the diodes.

A difference signal of zero can be generated either by centering a dark or a

bright fringe across the diodes. However, only one of these configurations returns an

error signal of the correct sign for negative feedback: the other generates a “correction”

of the wrong sign, which further displaces the fringes away from the zero point.  To

facilitate locking either to the bright or dark fringes, a polarity inverter was included in

the locking circuit.

The next element in the circuit is the integrator. With the switch set so that the

difference signal Vin  arrives at the inverting input of the op-amp, the output signal is

given by

Vout t( ) =
−1

RC
d ′ t Vin−∞

t

∫ ′ t ( ) (D.1)

with the gain determined by the choices of R and C. The Fourier transform of this

relation,:

˜ V out ( ) =
−1

i RC
˜ V in ( ) = e

i
2

1

RC
˜ V in ( )  , (D.2)
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shows that the gain is infinite at DC, and falls off inversely with frequency as → ∞ .

The gain is unity at the “cutoff frequency”

 c =
1

RC
(D.3)

The lower the values of R and C, the higher the gain will be at all frequencies, and the

faster the response of the integrator will be to changes in the input signal (higher cutoff

frequency) -- all desirable characteristics. However, in practice, we are forced to limit the

cutoff frequency to the value

180 =
2

2TR.T .

(D.4)

where TR.T .  is the time required for a signal to make one round trip through the

electronic and optical system. Signals with this frequency will arrive back at the input

180 degrees out of phase from the output, a sign change which results in positive

feedback instead of negative feedback. If the net gain of the system is above unity for

this frequency, oscillations will result. In practice, the value of R was changed by

adjusting a potentiometer while monitoring the integrated error signal. R was set to the

lowest value that did not cause oscillations. Typically the value of R was around 1 MΩ,

when C was 10 nf.

The final element in the locking circuit is an adder, which allowed control of the

PZT driver from an external source such as a function generator. This was used from

time to time during the alignment, to send a “ramp” voltage to the PZT. The integrator

was turned off so that the circuit did not try to lock the position of the mirror while it

was under external control.
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